Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T19:35:26.059Z Has data issue: false hasContentIssue false

MgO–TiO2 mixed oxide nanoparticles: Comparison of flame synthesis versus aerogel method; characterization, and photocatalytic activities

Published online by Cambridge University Press:  19 September 2012

Khadga M. Shrestha
Affiliation:
Department of Chemistry, Kansas State University, Manhattan, Kansas 66506
Christopher M. Sorensen
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506
Kenneth J. Klabunde*
Affiliation:
Department of Chemistry, Kansas State University, Manhattan, Kansas 66506
*
a)Address all correspondence to this author. e-mail: kenjk@ksu.edu
Get access

Abstract

Titanium dioxide (TiO2) and mixed oxides, i.e., mixtures of magnesium oxide and titanium dioxide (MgO–TiO2) with different ratios were synthesized by two methods—flame synthesis and aerogel, for comparison of their properties. The samples were characterized by powder x-ray diffraction (pXRD), energy-dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmet-Teller method of surface area measurements, ultraviolet-visible spectroscopy (UV-vis), and transition electron microscopic analysis. The pXRD patterns of different mixed oxides with different mole ratios revealed that there were formations of different compositions and phases. These mixed oxides were also used as photocatalysts in the UV-vis light to oxidize acetaldehyde, and carbon dioxide (CO2) was measured as a product. The mixed oxides with low content of MgO (∼1–2 mol%) were found to be more UV-active photocatalysts for the degradation of acetaldehyde than the degradation by Degussa P25 and as-synthesized TiO2, the highest by the MgO–TiO2 mixed oxides of 1:50 ratio when comparisons were carried out among the samples prepared by the same method. Furthermore, the mixed oxides prepared by the aerogel method were found to be superior photocatalysts compared with the mixed oxides of equal ratio prepared by flame synthesis. This effect of insulator, MgO, on the photocatalytic activity of semiconductor, TiO2, was found to be interesting and can be applied for other applications as environmentally friendly materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jacobsen, A.E.: Titanium dioxide pigments. Ind. Eng. Chem. 41, 523 (1949).CrossRefGoogle Scholar
Pramauro, E., Vincenti, M., Augugliaro, V., and Palmisano, L.: Photocatalytic degradation of monuron in aqueous TiO2 dispersions. Environ. Sci. Technol. 27, 1790 (1993).Google Scholar
Zhang, Y., Crittenden, J.C., Hand, D.W., and Perram, D.L.: Fixed-bed photocatalysts for solar decontamination of water. Environ. Sci. Technol. 28, 435 (1994).Google Scholar
Liu, J., Hu, Y., Gu, F., and Li, C.: Flame synthesis of ball-in-shell structured TiO2 nanospheres. Ind. Eng. Chem. Res. 48, 735 (2009).CrossRefGoogle Scholar
Lim, K.T., Hwang, H.S., Ryoo, W., and Johnston, K.P.: Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2. Langmuir 20, 2466 (2004).CrossRefGoogle Scholar
Liu, S.M., Gan, L.M., Liu, L.H., Zhang, W.D., and Zeng, H.C.: Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater. 14, 1391 (2002).CrossRefGoogle Scholar
Zhang, M., Bando, Y., and Wada, K.: Sol-gel template preparation of TiO2 nanotubes and nanorods. J. Mater. Sci. Lett. 20, 167 (2001).CrossRefGoogle Scholar
Grimes, C.A.: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 (2007).CrossRefGoogle Scholar
Yin, H., Wada, Y., Kitamura, T., Kambe, S., Murasawa, S., Mori, H., Sakata, T., and Yanagida, S.: Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J. Mater. Chem. 11, 1694 (2001).CrossRefGoogle Scholar
Murugan, A.V., Samuel, V., and Ravi, V.: Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Mater. Lett. 60, 479 (2006).CrossRefGoogle Scholar
Goossens, A., Maloney, E.L., and Schoonman, J.: Gas-phase synthesis of nanostructured anatase TiO2. Chem. Vap. Deposition 4, 109 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
Ohno, T., Takieda, K., Higashida, S., and Matsumura, M.: Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal., A 244, 383 (2003).Google Scholar
Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J., and Ito, S.: A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem. Int. Ed. 114, 2935 (2002).Google Scholar
Ohno, T., Surukawa, K., and Matsumura, M.: Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 105, 2417 (2001).Google Scholar
Sun, Q. and Xu, Y.: Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water. J. Phys. Chem. C 114, 18911(2010).CrossRefGoogle Scholar
Ohno, T., Sarukawa, K., and Matsumura, M.: Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reaction. New J. Chem. 26, 1167 (2002).CrossRefGoogle Scholar
Varghese, O.K., Paulose, M., LaTempa, T.J., and Grimes, C.A.: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731 (2009).Google Scholar
Hamal, D.B. and Klabunde, K.J.: Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J. Colloid Interface Sci. 311, 514 (2007).CrossRefGoogle ScholarPubMed
Paola, A.D., Lopez, E.G., Ikeda, S., Marci, G., Ohtani, B., and Palmisano, L.: Photocatalytic degradation of organic compounds in aqueous systems by transition metal-doped polycrystalline TiO2. Catal. Today 75, 87 (2002).Google Scholar
Bailor, J.C., Emeléus, H.J., Nyholm, R., and Trotman-Dikenson, A.F.: Comprehensive Inorganic Chemistry, 1st ed. (Compendium Publishers, Elmsford, NY, 1, 1973).Google Scholar
Zhan, J., Bando, Y., Hu, J., and Golberg, D.: Bulk synthesis of single-crystalline magnesium oxide nanotubes. Inorg. Chem. 43, 2462 (2004).Google Scholar
Richards, R., Mulukutla, R.S., Mishakov, I., Chesnokov, V., Volodin, A., Zaikovski, V., Sun, N., and Klabunde, K.J.: Nanocrystalline ultrahigh surface area magnesium oxide as a selective base catalyst. Scr. Mater. 44, 16631666 (2001).Google Scholar
Narske, R.M., Klabunde, K.J., and Fultz, S.: Solvent effect on the heterogeneous adsorption and reaction of (2-chloroethyl )ethyl sulfide on nanocrystalline magnesium oxide. Langmuir 18, 4819 (2002).Google Scholar
Richards, R., Li, W., Decker, S., Davidson, C., Koper, O., Zaikovski, V., Volodin, A., Rieker, T., and Klabunde, K.J.: Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J. Am. Chem. Soc. 122, 4921 (2000).Google Scholar
Mohandes, F., Davar, F., and Salavati-Niasari, M.: Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J. Phys. Chem. Solids 71, 1623 (2010).Google Scholar
Sharma, M. and Jeevanandam, P.: Synthesis of magnesium oxide particles with stacks of plates morphology. J. Alloys Compd. 509, 7881 (2011).CrossRefGoogle Scholar
Lopez, T., Garcia-Cruz, I., and Gomez, R.: Synthesis of magnesium oxide by the sol-gel method: Effect of the pH on the surface hydroxylation. J. Catal. 127, 75 (1991).Google Scholar
Li, Y.X. and Klabunde, K.J.: Nanoscale metal oxide particles as chemical regents. Destructive adsorption of a chemical simulant, dimethyl methyl phosophonate, on heat-treated magnesium oxide. Langmuir 7, 1388 (1991).CrossRefGoogle Scholar
Stark, J.V., Park, D.G., Lagadic, I., and Klabunde, K.J.: Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence. Chem. Mater. 8, 1904 (1996).Google Scholar
Duan, G., Yang, X., Chen, J., Huang, G., Lu, L., and Wang, X.: The catalytic effect of nanosized MgO on the decomposition of ammonium perchloride. Powder Technol. 172, 27 (2007).CrossRefGoogle Scholar
Chen, F., Zhao, J., and Hidaka, H.: Highly selective deethylation of rhodamin B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int. J. Photoenergy 5, 209 (2003).CrossRefGoogle Scholar
Hu, Y., Li, C., Gu, F., and Zhao, Y.: Facile flame synthesis and photoluminescent properties of core/shell TiO2/SiO2 nanoparticles. J. Alloys Compd. 432, L5 (2007).Google Scholar
Fang, J., Bi, X., Si, D., Jiang, Z., and Huang, W.: Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl. Surf. Sci. 253, 8952 (2007).Google Scholar
Das, D., Mishra, H.K., Parida, K.M., and Dalai, A.K.: Preparation, physicochemical characterization and catalytic activity of sulfated ZrO2–TiO2 mixed oxides. J. Mol. Catal. A: Chem. 189, 271 (2002).CrossRefGoogle Scholar
Pal, B., Sharon, M., and Nogami, G.: Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties. Mater. Chem. Phys. 59, 254 (1999).CrossRefGoogle Scholar
Lin, J. and Yu, J.C.: An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. J. Photochem. Photobiol., A 116, 63 (1998).Google Scholar
Osman, J.R., Crayston, J.A., Pratt, A., and Richens, D.T.: Sol-gel processing of IrO2–TiO2 mixed metal oxides based on an iridium acetate precursor. J. Sol-Gel Sci. Technol. 46, 126 (2008).CrossRefGoogle Scholar
Jung, Y.S., Kim, K.H., Jang, T.Y., Tak, Y., and Baeck, S.H.: Enhancement of photocatalytic properties of Cr2O3-TiO2 mixed oxides prepared by sol-gel method. Curr. Appl. Phys. 11, 358 (2011).Google Scholar
Barison, S., Daolio, S., Fabrizio, M., and Battisti, A.D.: Surface chemistry study of RuO2/IrO2/TiO2 mixed-oxide electrodes. Rapid Commun. Mass Spectrom. 18, 278 (2004).Google Scholar
Reddy, B.M., Ganesh, I., and Khan, A.: Preparation and characterization of In2O3–TiO2 and V2O5/In2O3–TiO2 composite oxides for catalytic applications. Appl. Catal., A 248, 169 (2003).Google Scholar
Julian-Lopez, B., Martos, M., Ulldemolins, N., Odriozola, J.A., Cordoncillo, E., and Escribano, P.: Self-assembling of Er2O3–TiO2 mixed oxide nanoplatelets by template-free solvothermal route. Chem. Eur. J. 15, 12426 (2009).Google Scholar
Osman, J.R., Crayston, J.A., Pratt, A., and Ritcher, D.T.: RuO2–TiO2 mixed oxides prepared by hydrolysis of metal alkoxides. Mater. Chem. Phys. 110, 256 (2008).Google Scholar
Hou, L.R., Yuan, C.Z., and Peng, Y.: Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composite. J. Hazard. Mater. 139, 310 (2007).Google Scholar
Bandara, J. and Pradeep, U.W.: Tuning of the flat-band potentials of nanocrystalline TiO2 and SnO2 particles with an outer-shell MgO layer. Thin Solid Films 517, 952 (2008).CrossRefGoogle Scholar
Ranjit, K.T., Martyanov, I., Demydov, D., Uma, S., Rodrigues, S., and Klabunde, K.J.: A review of the chemical manipulation of nanomaterials using solvent: Gelation-dependent structures. J. Sol-Gel Sci. Technol. 40, 335 (2006).Google Scholar
Wei, W., Li, H., Chen, S., Yuan, C., and Yuan, Q.: One step synthesis of ZnO–MgO core-sheath structures. Cryst. Res. Technol. 44, 861 (2009).Google Scholar
Aramendia, M.A., Borau, V., Jimenez, C., Marinas, J.M., Porras, A., and Urbano, F.J.: Synthesis and characterization of MgO–B2O3 mixed oxides prepared by coprecipitation; selective dehydrogenation of propan-2-ol. J. Mater. Chem. 9, 819 (1999).CrossRefGoogle Scholar
Reddy, B.M., Kumar, M.V., and Ratnam, K.J.: Selective oxidation of p-methoxytoluene p-methoxybenzaldehyde over V2O5/CaO–MgO catalysts. Appl.Catal., A 181, 77 (1999).Google Scholar
Qiujie, S., Ning, L., and Yi, L.: Preparation of MgO-supported Cu2O catalyst and its catalytic properties for cyclohexanol dehydrogenation. Chin. J. Catal. 28, 57 (2007).Google Scholar
Martin, M.E., Narske, R.M., and Klabunde, K.J.: Mesoporous metal oxides formed by aggregation of nanocrystal. Behavior of aluminum oxide and mixtures with magnesium oxide in destructive adsorption of the chemical warfare surrogate 2-chloroethylethyl sulfide. Microporous Mesoporous Mater. 83, 47 (2005).Google Scholar
Gawande, M.B., Branco, P.S., Parghi, K., Shrikhande, J.J., Pandey, R.K., Ghumman, C.A.A., Bundaleski, N., Teodoro, O.M.N.D., and Jayaram, R.V.: Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications. Catal. Sci. Technol. 1, 1653 (2011).Google Scholar
Ilian, E.V., Mishakov, I.V., Vedyagin, A.A., Bedilo, A.F., and Klabunde, K.J.: Synthesis of nanocrystalline VOx/MgO aerogel and their application for destructive adsorption of CF2Cl2. NSTI-Nanotech. 1, 452 (2010).Google Scholar
Abimanyu, H., Ahn, B.S., Kim, C.S., and Yoo, K.S.: Preparation and characterization of MgO–CeO2 mixed oxide catalysts by modified coprecipitation using ionic liquids for dimethyl carbonate synthesis. Ind. Eng. Chem. Res. 46, 7936 (2007).CrossRefGoogle Scholar
Llanos, M.E., Lopez, T., and Gomez, R.: Determination of surface homogeneity of MgO–SiO2 sol-gel mixed oxides by means of CO2 and ammonia thermodesorption. Langmuir 13, 974 (1997).Google Scholar
Carnes, C.L., Kapoor, P.N., Klabunde, K.J., and Bonevich, J.: Synthesis, characterization, and adsorption studies of nanocrystalline aluminum oxide and a bimetallic nanocrystalline aluminum oxide/magnesium oxide. Chem. Mater. 14, 2922 (2002).Google Scholar
Sieger, H., Suffner, J., Hahn, H., Raju, A.R., and Miehe, G.: Thermal stability of nanocrystalline Sm2O3 and Sm2O3-MgO. J. Am. Ceram. Soc. 89, 979 (2006).CrossRefGoogle Scholar
Aramendia, M.A., Borau, V., Jimenez, C., Marinas, A., Marinas, J.M., Navio, J.A., Ruiz, J.R., and Urbano, F.J.: Synthesis and textural-structural characterization of magnesia, magnesia-titania, and magnesia-zirconia catalysts. Colloids Surf., A 234, 17 (2004).Google Scholar
Jung, H.S., Lee, J.K., Nastasi, M., Lee, S.W., Kim, J.Y., Park, J.S., Hong, K.S., and Shin, H.: Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir 21, 10332 (2005).Google Scholar
Stubicar, N., Tonejc, A., and Stubicar, M.: Microstructural evolution of some MgO–TiO2 and MgO–Al2O3 powder mixtures during high-energy ball milling and post-annealing studied by x-ray diffraction. Alloys Compd. 370, 296 (2004).Google Scholar
Osabe, D., Seyama, H., and Maki, K.: Evaluation of crystallinity in TiO2 films with mixed structures grown on MgO (001) substrates by argon-ion beam sputtering based on infrared reflection-absorption spectra. Appl. Opt. 41, 739 (2001).Google Scholar
Bernard, J., Belnou, F., Houidvet, D., and Haussonne, J.M.: Synthesis of pure MgTiO3 by optimizing mixing/grinding condition of MgO + TiO2 powders. J. Mater. Process. Technol. 199, 150 (2008).CrossRefGoogle Scholar
Lopez, T., Hernandez, J., Gomez, R., Bokhimi, X., Boldu, J.L., Munoz, E., Novaro, O., and Garcia-Ruiz, A.: Synthesis and characterization of TiO2–MgO mixed oxides prepared by the sol-gel method. Langmuir 15, 5689 (1999).CrossRefGoogle Scholar
Bandara, J., Hadapangoda, C.C., and Jayasekera, W.G.: TiO2/MgO composite photocatalyst: The role of MgO in photoinduced charge carrier separation. Appl. Catal., B 50, 83 (2004).CrossRefGoogle Scholar
Wen, Z., Yu, X., Tu, S.T., Yan, J., and Dahlquist, E.: Biodiesel production from waste cooking oil catalyzed by TiO2–MgO mixed oxides. Bioresour. Technol. 101, 9570 (2010).Google Scholar
Lopez, T., Hernandez-Ventura, J., Aguilar, D.H., and Quintana, P.: Thermal phase stability and catalytic properties of nanostructured TiO2-MgO sol-gel mixed oxides. J. Nanosci. Nanotechnol. 8, 6608 (2008).CrossRefGoogle ScholarPubMed
Utamapanya, S., Klabunde, K.J., and Schlup, J.R.: Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem. Mater. 3, 175 (1991).CrossRefGoogle Scholar
Kammler, H.K., Mädler, L., and Pratsinis, S.E.: Flame synthesis of nanoparticles. Chem. Eng. Technol. 24, 583 (2001).Google Scholar
Jones, G.W., Lewis, B., and Seaman, H.: The flame temperature of methane-oxygen, methane-hydrogen and methane-acetylene with air. J. Am. Chem. Soc. 53, 3992 (1931).Google Scholar
Urzica, D. and Gutheil, E.: Structure of laminar methane/nitrogen/oxygen, methane/oxygen and methane/liquid oxygen counterflow flames for cryogenic conditions and elevated pressures. Z. Phys. Chem. 223, 651, (2009).Google Scholar
Fissan, H.J.: Temperature distribution in open oxygen air methane-oxygen flame. Combust. Flame 17, 355 (1971).CrossRefGoogle Scholar
Shrestha, K.M., Sorensen, C.M., and Klabunde, K.J.: Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials at near infrared region. J. Phys. Chem. C 114, 14368 (2010).Google Scholar
Czanderna, A.W., Rao, C.N.R., and Honig, J.M.: The anatase-rutile transition part 1.— Kinetics of the transformation of pure anatase. Trans. Faraday Soc. 54, 1069 (1958)CrossRefGoogle Scholar
Hargreaves, J.S.J., Hutchings, G.J., Joyner, R.W., and Kiely, C.J.: The relationship between catalysts morphology and performance in oxidative coupling of methane. J. Catal. 135, 576 (1992).Google Scholar
Che, M. and Tench, A.J.: Characterization and reactivity of molecular oxygen species on oxide surfaces. Adv. Catal. 32, 1 (1983).Google Scholar
Zhang, L., Ji, H., Lei, Y., and Xiao, W.: Oxygen adsorption on anatase surfaces and edges. Appl. Surf. Sci. 257, 8402 (2011).Google Scholar
Anpo, M., Yamada, Y., and Kubokawa, Y.: Photoluminescence and photocatalytic activity of MgO powders with coordinatively unsaturated surface ions. J. Chem. Soc. Commun. 50, 714 (1986).Google Scholar
Pacchioni, G. and Ferrari, A.M.: Surface reactivity of MgO oxygen vacancies. Catal. Today 50, 533(1999).Google Scholar
Smith, W.R. and Ford, D.G.: Adsorption studies on heterogeneous titania and homogeneous carbon surfaces. J. Phys. Chem. 69, 3587 (1965).Google Scholar
Ding, Z., Lu, G.Q., and Greenfield, P.F.: Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B 104, 4815 (2000).Google Scholar