Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T01:56:00.986Z Has data issue: false hasContentIssue false

Micro-effects of resputtering due to negative ion bombardment of growing thin films

Published online by Cambridge University Press:  31 January 2011

Daniel J. Kester
Affiliation:
Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
Russell Messier
Affiliation:
Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Negative ion bombardment of an evolving thin film can cause changes in the film's surface due to resputtering of the already deposited material. Through the study of rf-sputtered perovskite (BaTiO3) thin films, we have found that surface micro-effects, i.e., changes in the surface morphology of the films at the μm-scale level, are dependent on the deposition conditions. Ripples, cones, ridges, and etch pits of various shapes and sizes were all observed on growing films. A transformation of the morphology of the top surface of the film as a function of both deposition time and location on the substrate has been observed. The type of surface morphology found at any point was found to be dependent on a number of factors, including deposition rates, flux and energy of bombarding ions, and the average angle of incidence of the bombarding ions. We have developed a qualitative model for the formation of these surface features, based on the resputtering yield as a function of the average angle of incidence of the bombarding ions. The model suggests that surface nonuniformities, often ripples, initiate the development of etch pits. Other mechanisms of the surface morphology development (such as clustering) are used to explain the formation of surface features other than etch pits.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cuomo, J. J., Gambino, R. J., Harper, J. M.E., and Kuptsis, J. D., IBM J. Res. Develop. 21, 580 (1977).CrossRefGoogle Scholar
2Kester, D. J. and Messier, R., J. Mater. Res. 8, 1928 (1993).CrossRefGoogle Scholar
3Gilbert, L. R., Messier, R., and Roy, R., Thin Solid Films 54, 129 (1978).CrossRefGoogle Scholar
4Gilbert, L. R., Messier, R., and Krishnaswamy, S. V., J. Vac. Sci. Technol. 17, 389 (1980).CrossRefGoogle Scholar
5Grace, J. M., McDonald, D. B., Reiten, M. T., Olson, J., Kampwirth, R. T., and Gray, K. E., J. Appl. Phys. 70, 3867 (1991).CrossRefGoogle Scholar
6Shah, S.I., Thin Solid Films 181, 157 (1989).CrossRefGoogle Scholar
7Hada, T., Hayakawa, S., and Wasa, K., Jpn. J. Appl. Phys. 9, 1078 (1970).CrossRefGoogle Scholar
8Kester, D. J. and Messier, R., J. Vac. Sci. Technol. A 4, 496 (1986).CrossRefGoogle Scholar
9Springholz, G., Aichholzer, K., Abt, R., Leising, G., Leitner, O., Kranebitter, P., and Polt, P., J. Less-Common Metals 151, 377 (1989).CrossRefGoogle Scholar
10Navinsek, B., Prog. Surf. Sci. 7, 49 (1976).CrossRefGoogle Scholar
11Carter, G., Nobes, M. J., Paton, F., Williams, J. S., and Whitton, J. L., Radiat. Eff. 33, 65 (1977).CrossRefGoogle Scholar
12Berg, R. S. and Kominiak, G. J., J. Vac. Sci. Technol. 13, 403 (1976).CrossRefGoogle Scholar
13Bhatia, C.S., Thin Solid Films 96, 249 (1982).CrossRefGoogle Scholar
14Wehnei, G.K. and Hajicek, D.J., J. Appl. Phys. 42, 1145 (1971).CrossRefGoogle Scholar
15Panitz, J. K. C., Sharp, D.J., and Healey, J.T., J. Vac. Sci. Technol. 18, 405 (1981).CrossRefGoogle Scholar
16Messier, R., Krishnaswamy, S.V., and Walker, P. L. Jr., Carbon 20, 29 (1982).CrossRefGoogle Scholar
17Hermanne, N., Radiat. Eff. 19, 161 (1973).CrossRefGoogle Scholar
18Chaudhari, P., J. Appl. Phys. 45, 4339 (1974).CrossRefGoogle Scholar
19Harper, J. M. E., Cuomo, J. J., Gambino, R. J., and Kaufman, H. R., in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelly, R. (Elsevier, Amsterdam, 1984), p. 150.Google Scholar
20Tominaga, K., Iwamura, S., Shintani, Y., and Toda, O., Jpn. J. Appl.Phys. 22, 418 (1983).CrossRefGoogle Scholar
21Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A 6, 2390 (1988).CrossRefGoogle Scholar
22Kaufman, H. R. and Robinson, R. S., J. Vac. Sci. Technol. 16, 175 (1979).CrossRefGoogle Scholar