Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T20:56:21.037Z Has data issue: false hasContentIssue false

Micropatterned lead zirconium titanate thin films

Published online by Cambridge University Press:  31 January 2011

J. S. Vartuli
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263
M. Özenbaş
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06531, Turkey
C-M. Chun
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263
M. Trau
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263
I. A. Aksay
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263
Get access

Abstract

Micropatterning of Pb(Zr0.52Ti0.48)O3 (PZT) thin films with line features as small as 350 nm was demonstrated through capillary molding of organometallic solutions within the continuous channels of an elastomeric mold. Despite the large stresses that develop during the evaporation of the solvent, pyrolysis of the organics, and the densification and crystallization of the inorganic gel, the patterned crystalline PZT films were crack-free and mechanically robust. Flawless regions as large as 1 cm2 were obtained. The cross-sectional shape of the patterned PZT lines was trapezoidlike. Single perovskite PZT grains that formed during annealing at 600–700 °C completely filled the cross-sectional area of the patterned lines. Lead acetate, zirconium propoxide, and titanium isopropoxide were used as the starting materials. Substrates used included silver tape, stainless steel plate, silicon wafer, and platinum-coated silicon wafer.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J.F. and Paz de Araujo, C.A., Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Polla, D.L., Microelect. Eng. 29, 51 (1995).CrossRefGoogle Scholar
3.Polla, D.L. and Francis, L.F., Annu. Rev. Mater. Sci. 28, 563 (1998).CrossRefGoogle Scholar
4.O’Connor, L., Mech. Engin. 115, 62 (1993).Google Scholar
5.Hauptmann, P., Lucklum, R., Püttmer, A., Henning, B., Sens. Actuators A 67, 32 (1998).CrossRefGoogle Scholar
6.Rosenman, G., Shur, D., and Skliar, A., J. Appl. Phys. 79, 7401 (1996).CrossRefGoogle Scholar
7.Scott, W.B., Aviation Week Space Technol. 138, 36 (1993).Google Scholar
8.Jenkins, D.F.L., Cunningham, M., and Clegg, W.W., Microelectr. Eng. 29, 71 (1995).CrossRefGoogle Scholar
9.Muralt, P., J. Micromech. Microeng. 10, 136 (2000).CrossRefGoogle Scholar
10.Ko, W.H., Sens. Actuators A 56, 193 (1996).CrossRefGoogle Scholar
11.Jeon, N.L., Clem, P.G., Payne, D.A., and Nuzzo, R.G., J. Mater. Res. 10, 2996 (1995).CrossRefGoogle Scholar
12.Clem, P.G., Jeon, N-L., Nuzzo, R.G., Payne, D.A., J. Am. Ceram. Soc. 80, 2821 (1997).CrossRefGoogle Scholar
13.Jeon, N-L., Clem, P., Jung, D.Y., Lin, W., Girolami, G.S., Payne, D.A., and Nuzzo, R.G., Adv. Mater. 9, 891 (1997).CrossRefGoogle Scholar
14.Trau, M., Yao, N., Kim, E., Xia, Y., Whitesides, G.M., and Aksay, I.A., Nature 390, 674 (1997).CrossRefGoogle Scholar
15.Yang, P.D., Deng, T., Zhao, D.Y., Pine, D., Chmelka, B.F., Whitesides, G.M., Stucky, G.D., Science 282, 2244 (1998).CrossRefGoogle Scholar
16.Payne, D.A. and Clem, P.G., J. Electroceramics 3, 163 (1999).CrossRefGoogle Scholar
17.Kim, J.H., Lange, F.F., Cheon, C-I., J. Mater. Res. 14, 1194 (1999).CrossRefGoogle Scholar
18.Moran, P.M. and Lange, F.F., Appl. Phys. Letts. 74, 9 (1999).CrossRefGoogle Scholar
19.Beh, W.S., Xia, Y., and Qin, D., J. Mater. Res. 14, 3995 (1999).CrossRefGoogle Scholar
20.Xia, Y. and Whitesides, G.M., Annu. Rev. Mater. Sci. 28, 153 (1998).CrossRefGoogle Scholar
21.Kumar, A. and Whitesides, G.M., Appl. Phys. Lett. 63, 2002 (1993).CrossRefGoogle Scholar
22.Kumar, A., Biebuyck, H.A., and Whitesides, G.M., Langmuir 10, 1498 (1994).CrossRefGoogle Scholar
23.Kim, E., Xia, Y., and Whitesides, G.M., Nature 376, 581 (1995).CrossRefGoogle Scholar
24.Xia, Y., Kim, E., and Whitesides, G.M., Chem. Mater. 8, 1558 (1996).CrossRefGoogle Scholar
25.Reaney, I.M., Brooks, K., and Klissurska, R., J. Am. Ceram. Soc. 77, 1209 (1994).CrossRefGoogle Scholar
26.Liu, Y. and Phule, P.P., J. Am. Ceram. Soc. 80, 2410 (1997).CrossRefGoogle Scholar
27.Carim, A.H., Tuttle, B.A., Doughty, D.H., and Martinez, S.L., J. Am. Ceram. Soc. 74, 1455 (1991).CrossRefGoogle Scholar
28.Barrow, D.A., Petroff, T.E., Tandon, R.P., and Sayer, M., J. Appl. Phys. 81, 876 (1997).CrossRefGoogle Scholar
29.Yi, G., Wu, Z., and Sayer, M., J Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
30.Guthner, P. and Dransfeld, K., Appl. Phys. Lett. 61, 1137 (1992).CrossRefGoogle Scholar
31.Tuttle, B.A., Headley, T.J., Bunker, B.C., Schwartz, R.W., Zender, , Hernandez, C.L., Goodnow, D.C., Tissot, R.J., Michael, , and Carim, A.H., J. Mater. Res. 7, 1876 (1992).CrossRefGoogle Scholar
32.Lakeman, C.D.E., Xu, Z., and Payne, D.A., J. Mater. Res. 10, 2042 (1995).CrossRefGoogle Scholar
33.Tuttle, B.A., Headley, T.J., Al-Shareef, H.N., Voigt, J.A., Rodriguez, M., Michael, J., and Warren, W.L., J. Mater. Res. 11, 2309 (1996).CrossRefGoogle Scholar
34.Lange, F.F., Science 273, 903 (1996).CrossRefGoogle Scholar
35.Hutchinson, J.W. and Suo, Z., in Advances in Applied Mechanics, edited by Hutchinson, J.W., Wu, T.Y. (Academic Press, Boston, MA, 1992).Google Scholar