Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T01:13:01.713Z Has data issue: false hasContentIssue false

Microscratch analysis of the work of adhesion for Pt thin films on NiO

Published online by Cambridge University Press:  31 January 2011

S. Venkataraman
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
D.L. Kohlstedt
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455
W.W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

The adhesion of as-sputtered Pt thin films to NiO single crystals has been characterized by a continuous microscratch technique. In these experiments, a conical indenter was driven into a 1.2 μm thick Pt film at a rate of 15 nm/s, and across the sample surface at a rate of 0.5 μm/s, until a load drop was observed indicating that the film had delaminated. Using the width of the scratch track at the point at which the film delaminated from the substrate, the critical load required for delamination, and the area of the delaminated region, a model has been developed to determine the work of adhesion of the Pt/NiO system. This model uses an elastic contact mechanics approach to relate the stresses acting in a scratch experiment to the strain energy released during film delamination. Using this model, the work of adhesion and hence the interfacial fracture toughness have been determined to be 0.023–0.06 J/m2 and 0.07–0.11 MPa$\sqrt m$, respectively. These values are in reasonable agreement with those determined by other methods for metal-ceramic systems.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.McPherson, J. W. and Dunn, C. F., J. Vac. Sci. Technol. B 5, 1321 (1987).CrossRefGoogle Scholar
2.Kita, T., Kogure, K., Mitsuya, Y., and Nakanishi, T., IEEE Trans. Magn. MAG-16, 873 (1980).Google Scholar
3.LaFontaine, W. R., Yost, B., and Li, Che-Yu, J. Mater. Res. 5, 776 (1990).Google Scholar
4.Bailey, F. P. and Black, K. J. T., J. Mater. Sci. 13, 1045 (1978).CrossRefGoogle Scholar
5.Perry, A. J., Thin Solid Films 107, 167 (1983).CrossRefGoogle Scholar
6.Perry, A. J., Surf. Eng. 2, 183 (1986).Google Scholar
7.Perry, A. J., Laeng, P., and Hintermann, H. E., Proc. 8th Int. Conf. on Chemical Vapor Deposition (Electrochemical Society, Pennington, NJ, 1981), p. 475.Google Scholar
8.Ahn, J., Mittal, K. L., and MacQueen, R. H., Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings edited by Mittal, K. L. (ASTM Spec. Tech. Publ. 640, 1978), p. 134.Google Scholar
9.Steinmann, P. A., Laeng, P., and Hintermann, H. E., Mater. Technol. 13, 85 (1985).Google Scholar
10.Steinmann, P. A., Tardy, Y., and Hintermann, H. E., Thin Solid Films 154, 333 (1987).CrossRefGoogle Scholar
11.Wu, T. W., Hwang, C., Lo, J., and Alexopoulos, P. S., Thin Solid Films 166, 299 (1988).Google Scholar
12.Wu, T. W., Burn, R. A., Chen, M. M., and Alexopoulos, P. S., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 117.Google Scholar
13.Wu, T. W., Moshref, M., and Alexopoulos, P. S., Thin Solid Films 187, 295 (1990).CrossRefGoogle Scholar
14.LaFontaine, W. R., Wu, T. W., Alexopoulos, P. S., Li, Che-Yu, and Stone, D., Properties and Preparation of Amorphous Carbon Films, edited by Pouch, John J. and Alterwitz, Samuel A. (Trans. Tech. Publications Ltd., Switzerland, 1990), Vol. 52/53, Materials Science Forum.Google Scholar
15.Wu, T. W., J. Mater. Res. 6, 407 (1991).CrossRefGoogle Scholar
16.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
17.Benjamin, P. and Weaver, C., Proc. R. Soc. London A254, 163 (1960).Google Scholar
18.Benjamin, P. and Weaver, C., Proc. R. Soc. London A254, 177 (1960).Google Scholar
19.Benjamin, P. and Weaver, C., Proc. R. Soc. London A261, 516 (1961).Google Scholar
20.Benjamin, P. and Weaver, C., Proc. R. Soc. London A274, 267 (1963).Google Scholar
21.Weaver, C., Adhesion, Fundamentals and Practice (Ministry of Technology, McLaren and Sons, London, 1969), p. 46.Google Scholar
22.Weaver, C., J. Vac. Sci. Technol. 12, 18 (1975).Google Scholar
23.Laugier, M. T., Thin Solid Films 117, 243 (1984).CrossRefGoogle Scholar
24.Laugier, M. T., J. Mater. Sci. 21, 2269 (1986).CrossRefGoogle Scholar
25.Coghill, M. D. E. and St, D. H.. John, Surf. Coatings Technol. 41, 135 (1990).Google Scholar
26.Burnett, P. J. and Rickerby, D. S., Thin Solid Films 148, 41 (1987).Google Scholar
27.Burnett, P. J. and Rickerby, D. S., Thin Solid Films 148, 51 (1987).Google Scholar
28.Burnett, P. J. and Rickerby, D. S., Thin Solid Films 157, 233 (1988).Google Scholar
29.Bull, S. J., Rickerby, D. S., Matthews, A., Leyland, A., Pace, A. R., and Valli, J., Surf. Coatings Technol. 36, 503 (1988).Google Scholar
30.Johnson, K. L., Contact Mechanics (Cambridge University Press, 1985), pp. 5051, 68–70, 171–179, 427–428.CrossRefGoogle Scholar
31.Moore, D. F., The Friction and Lubrication of Elastomers (Pergamon Press, New York, Oxford), p. 67.Google Scholar
32.Dieter, G. E., Mechanical Metallurgy (McGraw-Hill Publications, New York, 1988), p. 353.Google Scholar
33.Dalgleish, B. J., Lu, M. C., and Evans, A. G., Acta Metall. 36, 2029 (1988).Google Scholar
34.Evans, A. J. and Ruhle, M., MRS Bulletin X, 46 (1990).CrossRefGoogle Scholar
35.Agrawal, D. C. and Raj, R., Mater. Sci. Eng. A126, 125 (1990).CrossRefGoogle Scholar