Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T21:46:01.069Z Has data issue: false hasContentIssue false

Microstructural characterization of a microwave-sintered silicon nitride based ceramic

Published online by Cambridge University Press:  03 March 2011

Kevin P. Plucknett*
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
David S. Wilkinson
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
*
a)Present address: Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831–6068.
Get access

Abstract

The microstructure of a microwave-densified silicon nitride based ceramic has been assessed in the as-sintered, post-sinter hot-isostatically pressed (HIPed) and annealed conditions. The grain size of the as-sintered material, which is a low substitution β′-Sialon, was significantly finer than observed in conventionally processed materials of similar composition. The as-sintered ceramic exhibits a reverse porosity gradient (with the highest porosity level at the surface) due to heat dissipation to the cooler surroundings during microwave processing. This also results in a higher β′ aspect ratio close to the surface arising from an increased glass viscosity (due to heat loss) and compositional change in this region during sintering. HIPing results in removal of all porosity from the sample core; however, a reduced porosity surface layer is retained. Significant β′-Sialon grain growth is also apparent after HIPing. A fine β′ grain structure was retained after annealing, with partial devitrification of the glassy grain boundary phase to β-Y2Si2O7.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tiegs, T. N., Kiggans, J. O., and Kimrey, H. D., Ceram. Eng. Sci. Proc. 12, 1981 (1991).Google Scholar
2Tiegs, T. N., Kiggans, J. O., and Kimrey, H. D., in Microwave Processing of Materials II, edited by Snyder, W. B. Jr., Sutton, W. H., Iskander, M. F., and Johnson, D. L. (Mater. Res. Soc. Symp. Proc. 189, Pittsburgh, PA, 1990), p. 267.Google Scholar
3Patterson, M. C. L., Apte, P. S., Kimber, R. M., and Roy, R., in Proc. Int. Conf. on Microwaves and High Frequency (Comite Francais De L'Electricite, Nice, France, 1991), p. 33.Google Scholar
4Patterson, M. C. L., Apte, P. S., Kimber, R. M., and Roy, R., in Microwave Processing of Materials III, edited by Beatty, R. L., Sutton, W. H., and Iskander, M. F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), p. 301.Google Scholar
5Patterson, M. C. L., Apte, P. S., Kimber, R. M., and Roy, R., in Microwave Processing of Materials III, edited by Sutton, W. H., and Iskander, M. F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), p. 291.Google Scholar
6Meek, T. T., Blake, R. D., and Petrovic, J. J., Ceram. Eng. Sci. Proc. 8, 861 (1987).CrossRefGoogle Scholar
7Janney, M. A. and Kimrey, H. D., in Ceramic Powder Science II, edited by Messing, G. L., Fuller, E. R., and Hausner, H. (Ceramic Transactions 1, Westerville, OH, 1988), p. 919.Google Scholar
8Apte, P. S., Kimber, R. M., and Patterson, M.C.L., in Structural Ceramics Processing, Microstructure and Properties, edited by Bentzen, J. J., Bilde-Sörensen, J. B., Christiansen, N., Horsewell, A., and Ralph, B. (Riso National Laboratory, Roskilde, Denmark, 1990), p. 167.Google Scholar
9Katz, J. D., Blake, R. D., Petrovic, J. J., and Sheinberg, H., in Microwave Processing of Materials, edited by Sutton, W. H., Brooks, M. H., and Chabinsky, I. J. (Mater. Res. Soc. Symp. Proc. 124, Pittsburgh, PA, 1988), p. 219.Google Scholar
10Janney, M. A., Calhoun, C. L., and Kimrey, H. D., J. Am. Ceram. Soc. 75, 341 (1992).CrossRefGoogle Scholar
11Levinson, L. M., Comanzo, H. A., and Shultz, W. N., in Microwave Processing Materials III, edited by Beatty, R. L., Sutton, W. H., and Iskander, M. F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), p. 311.Google Scholar
12Fang, Y., Agrawal, D. K., Roy, D. M., and Roy, R., in Microwaves: Theory and Application in Materials Processing, edited by Clark, D. E., Gac, F. D., and Sutton, W. H. (Ceramic Transactions 21, Westerville, OH, 1991), p. 349.Google Scholar
13Apte, P. S., Kimber, R. M., Patterson, M. C. L., Roy, R. Y., and Mitchell, D. N., Int. Patent Application No. WO 91/05747, May 2, 1991.Google Scholar
14Patterson, M. C. L., private communication.Google Scholar
15Cliff, G. and Lorimer, G. W., J. Micros. 103, 203 (1975).Google Scholar
16Wotting, G., Kanka, B., and Ziegler, G., in Non-Oxide Technical and Engineering Ceramics, edited by Hampshire, S. (Elsevier, London, England, 1986), p. 83.CrossRefGoogle Scholar
17Sutton, W. H., Am. Ceram. Soc. Bull. 68, 376 (1989).Google Scholar
18Janney, M. A., Kimrey, H. D., and Kiggans, J. O., in Microwave Processing of Materials III, edited by Beatty, R. L., Sutton, W. H., and Iskander, M. F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), p. 173.Google Scholar
19Thomas, J. J., Christensen, R. J., Johnson, D. L., and Jennings, H. M., J. Am. Ceram. Soc. Comm. 76, 1384 (1993).Google Scholar
20Tiegs, T. N., Kiggans, J. O., and Ploetz, K. L., in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by Chen, I-W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 277.Google Scholar
21Binner, J. G. P., Al-Dawery, LA., Aneziris, C., and Cross, T.E., in Microwave Processing of Materials III, edited by Beatty, R. L., Sutton, W. H., and Iskander, M. F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), p. 357.Google Scholar
22Spotz, M. S., Skamser, D. J., Day, P. S., Jennings, H. M., and Johnson, D. L., Ceram. Eng. Sci. Proc. 14, 753 (1993).Google Scholar
23Ziegler, G. and Wotting, G., Int. J. High. Tech. Ceram. 1, 31 (1985).Google Scholar
24Plucknett, K. P. and Lewis, M. H., Ceram. Eng. Sci. Proc. 12, 1327 (1991).Google Scholar
25Oyama, Y. and Kamigaito, O., Jpn. J. Appl. Phys. 10, 1637 (1971).CrossRefGoogle Scholar
26Plucknett, K. P. and Wilkinson, D. S., presentation #13-SX-92 at the 94th American Ceramic Society Annual Meeting, Minneapolis, MN, 1992.Google Scholar
27Janney, M. A. and Kimrey, H. D., in Sintering of Advanced Ceramics, edited by Handwerker, C. A., Blendell, J. E., and Kaysser, W. A. (Ceramic Transactions 7, Westerville, OH, 1990), p. 382.Google Scholar
28Janney, M. A., Kimrey, H. D., Schmidt, M. A., and Kiggans, J. O., J. Am. Ceram. Soc. 74, 1675 (1991).CrossRefGoogle Scholar
29Tiegs, T. N., Ferber, M. K., Kiggans, J. O., More, K. L., Hubbard, CM., and Coffey, D. W., in Microwaves: Theory and Application in Materials Processing, edited by Clark, D. E., Gac, F. D., and Sutton, W.H. (Ceramic Transactions 21, Westerville, OH, 1991), p. 411.Google Scholar
30Plucknett, K. P., unpublished research.Google Scholar
31Mitomo, M., Kuramoto, N., and Inomata, Y., J. Mater. Sci. 14, 2309 (1979).Google Scholar
32Kim, N-Y., Kim, D-Y., Kranzmann, A., Bischoff, E., and Kang, S-J.L., J. Mater. Sci. 28, 4355 (1993).CrossRefGoogle Scholar
33Plucknett, K. P. and Wilkinson, D. S., in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by Chen, I-W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 289.Google Scholar
34Kleebe, H-J., Cinibulk, M. K., Cannon, R. M., and Riihle, M., J. Am. Ceram. Soc. 76, 1969 (1993).CrossRefGoogle Scholar
35Tanaka, I., Kleebe, H-J., Cinibulk, M. K., Bruley, J., Clarke, D. R., and Riihle, M., J. Am. Ceram. Soc. 77, 911 (1994).Google Scholar
36Evans, A. G. and Charles, E. A., J. Am. Ceram. Soc. 59, 371 (1976).Google Scholar
37Bonnell, D. A., Tien, T-Y., and Ruhle, M., J. Am. Ceram. Soc. 70, 460 (1987).Google Scholar
38Chadwick, M. M. and Wilkinson, D. S., J. Am. Ceram. Soc. 76, 376 (1993).Google Scholar
39Raj, R. and Lange, F. F., Acta Metall. 29, 1993 (1981).CrossRefGoogle Scholar