Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T18:55:33.516Z Has data issue: false hasContentIssue false

Microstructural characterization of thick YBa2Cu3O7−δ films on improved rolling-assisted biaxially textured substrates

Published online by Cambridge University Press:  31 January 2011

K. J. Leonard
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, Tennessee 37831-6116
S. Kang
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, Tennessee 37831-6116
A. Goyal
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, Tennessee 37831-6116
K. A. Yarborough
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, Tennessee 37831-6116
D. M. Kroeger
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, Tennessee 37831-6116
Get access

Abstract

The microstructural changes associated with the reduced dependence of critical current density (Jc) versus thickness of thick, epitaxial YBa2Cu3O7–δ (YBCO) films on rolling-assisted biaxially textured substrates (RABiTS) were investigated. Pulsed laser deposited YBCO films varying in thickness from 1.0 to 6.4 ?m on RABiTS with an architecture of Ni–3 at.% W/Y2O3/yttrium-stabilized-zirconia/CeO2/YBCO were prepared for cross-sectional transmission electron microscopy studies. Dramatic improvements in physical properties and microstructural quality were observed resulting from the use of Ni–3 at.% W substrates, which provided a sharper texture over earlier Ni substrates, and replacement of CeO2 with Y2O3 as the seed layer within the buffers. The YBCO films showed exceptional orientation up to 6.4 μm thickness, with no misoriented grains or dead layers observed and only limited reaction between the YBCO and CeO2 cap layer. The high quality of the films was also attributed in part to the formation of a tungsten oxide layer forming at the top of the Ni–3% W substrate, limiting the growth of deleterious NiO into the conductor.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Foltyn, S.R., Jia, Q.X., Arendt, P.N., Kinder, L., Fan, Y., and Smith, J.F., Appl. Phys. Lett. 75, 3692 (1999).CrossRefGoogle Scholar
2.Sievers, S., Mattheis, F., Krebs, H.U., and Freyhardt, H.C., J. Appl. Phys. 78, 5545 (1995).Google Scholar
3.Zhang, X.F., Kung, H.H., Foltyn, S.R., Jia, Q.X., Peterson, E.J., and Peterson, D.E., J. Mater. Res. 14, 1204 (1999).Google Scholar
4.Park, J.H. and Lee, S.Y., Physica C, 314, 112 (1999).CrossRefGoogle Scholar
5.Holesinger, T.G., Foltyn, S.R., Arendt, P.N., Jia, Q.X., Dowden, P.C., DePaula, R.F., and Groves, J.R., IEEE Trans. Appl. Supercond. 11, 3359 (2001).Google Scholar
6.Develos, K.D., Yamasaki, H., Sawa, A., and Nakagawa, Y., Physica C 361, 121 (2001).Google Scholar
7.Develos, K.D., Yamasaki, H., Sawa, A., Nakagawa, Y., Oshima, S., and Mukaida, M., Physica C 357, 1353 (2001).Google Scholar
8.Holesinger, T.G., Foltyn, S.R., Arendt, P.N., Kung, H., Jia, Q.X., Dickerson, R.M., Dowden, P.C., DePaula, R.F., Groves, J.R., and Coulter, J.Y., J. Mater. Res. 15, 1110 (2000).Google Scholar
9.Leonard, K.J., Kang, B.W., Goyal, A., Kroeger, D.M., Jones, J.W., Kang, S., Rutter, N., Paranthaman, M., and Lee, D.F., J. Mater. Res. 18, 1109 (2003).Google Scholar
10.Eibl, O. and Roas, B., J. Mater. Res. 15, 2620 (1990).Google Scholar
11.Foltyn, S.R., Peterson, E.J., Coulter, J.Y., Arendt, P.N., Jia, Q.X., Dowden, P.C., Maley, M.P., Wu, X.D., and Peterson, D.E., J. Mater. Res. 12, 2941 (1997).Google Scholar
12.Zhai, H.Y., Rusakova, I., Fairhurst, R., and Chu, W.K., Philos. Mag. Lett. 81, 683 (2001).Google Scholar
13.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hatfield, E.C., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).Google Scholar
14.Budai, J.D., Christen, D.K., Goyal, A., He, Q., Kroeger, D.M., Lee, D.F., List, F.A., Norton, D.P., Paranthaman, M., Sales, B.C., and Specht, E.D., U.S. Patent 5 968 877 (1999).Google Scholar
15.Goyal, A., Feenstra, R., Paranthaman, M., Thompson, J.R., Kang, B.W., Cantoni, C., Lee, D.F., Martin, P.M., Lara-Curzio, E., Stevens, C., Kroeger, D.M., Kowalewski, M., Specht, E.D., Aytug, T., Sathyamurthy, S., Williams, R.K., and Ericson, R.E., Physica C 382, 251 (2002).Google Scholar
16.Kang, S., Goyal, A., Rutter, N.A., Leonard, K.J., Paranthaman, M., Sathyamurthy, S., and Kroeger, D.M., J. Mater. Res. (in review, 2003).Google Scholar
17.Kang, B.W., Goyal, A., Lee, D.F., Mathis, J.E., Specht, E.D., Martin, P.M., Kroeger, D.M., Paranthaman, M., and Sathyamurthy, S., J. Mater. Res. 17, 1750 (2002).Google Scholar
18.Bals, S., Tendeloo, G. Van, Rijinders, G., Blank, D.H.A., Leca, V., and Salluzzo, M., Physica C 372, 711 (2002).Google Scholar
19.Verbist, K., Vasiliev, A.L., and Tendeloo, G. Van, Appl. Phys. Lett. 66, 1424 (1995).Google Scholar
20.Catana, A., Broom, R.F., Bednorz, J.G., Mannhart, J., and Schlom, D.G., Appl. Phys. Lett. 60, 1016 (1992).Google Scholar
21.Catana, A., Bednorz, J.G., Gerber, C., Mannhart, J., and Schlom, D.G., Appl. Phys. Lett. 63, 553 (1993).Google Scholar
22.Yang, C.Y., Babcock, S.E., Inchinose, A., Goyal, A., Kroeger, D.M., Lee, D.F., List, F.A., Norton, D.P., Mathis, J.E., Paranthaman, M., and Park, C., Physica C 377, 333 (2002).Google Scholar
23.Scotti di Uccio, U., Granozio, F. Miletto, Chiara, A. Di, Tafuri, F., Lebedev, O.I., Verbist, K., and Tendeloo, G. van, Physica C 321, 162 (1999).Google Scholar
24.Broussard, P.R., Allen, L.H., Cestone, V.C., and Wolf, S.A., J. Appl. Phys. 74, 446 (1993).Google Scholar