Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T18:19:04.165Z Has data issue: false hasContentIssue false

Microstructural development in sol-gel derived lead zirconate titanate thin films: The role of precursor stoichiometry and processing environment

Published online by Cambridge University Press:  31 January 2011

M. J. Lefevre
Affiliation:
Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106–5050
J. S. Speck
Affiliation:
Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106–5050
R. W. Schwartz
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
D. Dimos
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
S. J. Lockwood
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

The role of precursor stoichiometry and local firing environment on the microstructural development of sol-gel derived lead zirconate titanate (PZT) thin films was investigated. Typically, excess Pb is added to films to compensate for PbO volatilization during heat treatment. Here, it is shown that the use of stoichiometric precursors with either a PbO atmosphere powder or a PbO overcoat during the crystallization heat treatment is an attractive and viable alternative method for control of film stoichiometry. Using these approaches, we have fabricated single phase perovskite thin films with microstructures and electrical properties (Pr ∼ 36 μC/cm2 and Ec ∼ 45 kV /cm) comparable to those of films using optimized solution chemistries and excess Pb additions. The potential advantage of increasing PbO partial pressure, or activity, during firing versus excess Pb additions is discussed from the standpoint of a proposed crystallization scenario based on the kinetic competition between Pb loss and the nucleation and growth rates of the perovskite phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dimos, D., Ann. Rev. Mater. Sci. 25, 273 (1995).CrossRefGoogle Scholar
2.Wilkinson, A. P., Speck, J.S., Cheetham, A. K., Natarajan, S., and Thomas, J. M., Chem. Mater. 6 (6), 750 (1994).CrossRefGoogle Scholar
3.Lakeman, C., Ph.D. dissertation, University of Illinois at Urbana-Champaign (1994).Google Scholar
4.Seifert, A., Lange, F. F., and Speck, J.S., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
5.Tani, T., Ph.D. dissertation, University of Illinois at Urbana-Champaign (1994).Google Scholar
6.Chen, S. and Chen, I., J. Am. Ceram. Soc. 77 (9), 2332 (1994).CrossRefGoogle Scholar
7.Chen, S. and Chen, I., J. Am. Ceram. Soc. 77 (9), 2337 (1994).CrossRefGoogle Scholar
8.Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).CrossRefGoogle Scholar
9.Leung, D. K., Chang, C. J., Rühle, M., and Lange, F. F., J. Am. Ceram. Soc. 74 (11), 2786 (1991).CrossRefGoogle Scholar
10.Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 75 (4), 946 (1992).CrossRefGoogle Scholar
11.Carim, A. H., Tuttle, B. A., Doughty, D. H., and Martinez, S. L., J. Am. Ceram. Soc. 74 (6), 1455 (1991).CrossRefGoogle Scholar
12.Holman, R. L. and Fulrath, R. M., J. Appl. Phys. 44 (12), 5227 (1973).CrossRefGoogle Scholar
13.Clarke, D. R., Ann. Rev. Mater. Sci. 13, 191 (1983).CrossRefGoogle Scholar
14.Tani, T. and Payne, D. A., J. Am. Ceram. Soc. 77 (5), 1242 (1994).CrossRefGoogle Scholar
15.Snow, G. S., J. Am. Ceram. Soc. 56 (2), 91 (1973).CrossRefGoogle Scholar
16.Kingon, A. I. and Clark, J.B., J. Am. Ceram. Soc. 66 (4), 253 (1983).CrossRefGoogle Scholar
17.Atkin, R. B. and Fulrath, R. M., J. Am. Ceram. Soc. 54 (5), 265 (1971).CrossRefGoogle Scholar
18.Holman, R. L. and Fulrath, R. M., J. Am. Ceram. Soc. 55 (4), 192 (1972).CrossRefGoogle Scholar
19.Assink, R. A. and Schwartz, R. W., Chem. Mater. 5 (4), 511 (1993).CrossRefGoogle Scholar
20.Schwartz, R. W., Boyle, T. J., Lockwood, S. J., Sinclair, M. B., Dimos, D., and Buchheit, C. D., Int. Ferro. 7, 259 (1995).CrossRefGoogle Scholar
21.Schwartz, R. W., Voigt, J.A., Buchheit, C. D., and Boyle, T. J., Ceram. Trans. 43, 145 (1994).Google Scholar
22.Schwartz, R. W., Assink, R. A., and Headly, T. J., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992).Google Scholar
23.Schwartz, R. W., Assink, R. A., Dimas, D., Sinclair, M. B., Boyle, T. J., and Buchheit, C. D., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 377.Google Scholar
24.Voigt, J. A., Tuttle, B. A., Headley, T. J., Eatough, M. O., Lamppa, D. L., and Goodnow, in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 15.Google Scholar
25.Tuttle, B. A., Draper, B. L., Michael, J., Nasby, R. D., Dugger, M. T., Arnold, G. W., Warren, W.L., and Goodnow, D.C., PAC RIM Meeting, November 7–10, 1993, Honolulu, HI.Google Scholar
26.Tuttle, B., Voigt, J.A., Headley, T. J., Potter, B. G., Dimos, D., Schwartz, R. W., Dugger, M. T., Michael, J., Nasby, R. D., Garino, T. J., and Goodnow, D. C., Ferroelectrics 151, 11 (1994).CrossRefGoogle Scholar