Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T21:08:59.215Z Has data issue: false hasContentIssue false

Microstructural development in the near-surface region during thermal annealing of Al2O3 implanted with cationic impurities

Published online by Cambridge University Press:  31 January 2011

G. C. Farlow
Affiliation:
Wright State University, Dayton, Ohio 45435
P. S. Sklad
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
C. J. McHargue
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Single-crystal Al2O3 was implanted with cationic impurities in the dose range 1–4 ⊠ 1016/cm2 and subsequently annealed in either an oxidizing or reducing environment. Following annealing at 1200°C or higher, crystalline precipitates or solid solutions are observed, which are consistent with what is expected from the equilibrium phase diagram.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Treatise on Materials Science and Technology, Vol. 18, Ion Implantation, edited by Hirvonen, J. K. (Academic Press, New York, 1980). See also articles contained in the Proc. of the 2nd Int. Conf. on Ion Beam Modification of Materials, Albany, New York, July 1980, published in Nucl. Instrum. Methods 182/183 (1981).Google Scholar
2Dearnley, G., Nucl. Instrum. Methods Phys. Res. Sect. B 7/8, 158 (1985).CrossRefGoogle Scholar
3Agajanian, A. H., Ion Implantation in Microelectronics (IFI Plenum Press, New York, 1981).CrossRefGoogle Scholar
4McHargue, C. J., Int. Rev. of Met. 2, 49 (1986), and references contained therein.CrossRefGoogle Scholar
5White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4, 39 (1989).CrossRefGoogle Scholar
6Burnett, P. J. and Page, T. F., in Plastic Deformation of Ceramic Materials, edited by Bradt, R. C. and Tressler, R. E. (Plenum Press, New York, 1984), p. 669; P. J. Burnett and T. F. Page, J. Mater. Sci. 19, 3524 (1984).CrossRefGoogle Scholar
7Naramoto, H., White, C. W., Williams, J. M., McHargue, C. J., Holland, O. W., Abraham, M. M., and Appleton, B. R., J. Appl. Phys. 54, 683 (1983).CrossRefGoogle Scholar
8Ohkubo, M., Hioki, T., and Kawamoto, J., J. Appl. Phys. 60, 1325 (1986).CrossRefGoogle Scholar
9Mouritz, A., Thesis, Royal Institute of Technology-Melbourne, Melbourne, Australia; Mouritz, A. P., Sood, D. K., St. John, D. H., Sinian, V., and Williams, J. S., Nucl. Instrum. Methods Phys. Res. Sect. B 19/20, 805 (1987).Google Scholar
10Monty, C., in Defects in Solids, edited by Chadwick, A. and Terenzi, M. (Plenum Press, New York, 1986), p. 377.CrossRefGoogle Scholar
11Naguib, H. M. and Kelly, R., Radiat. Eff. 25, 1 (1975).CrossRefGoogle Scholar
12Drigo, A. V., Russo, S. Lo, Mazzoldi, P., Goode, P. D., and Hartley, N. E. W., Radiat. Eff. 33, 161 (1970); A. Camera, G. Delia Mea, A. V. Drigo, S. Lo Russo, P. Mazzoldi, and N. E. W. Hartley, Radiat. Eff. 35, 201 (1977).CrossRefGoogle Scholar
13Camera, A., Drigo, A. V., and Mazzoldi, P., Radiat. Eff. 49, 29 (1980).Google Scholar
14Turos, A., Matzke, Hj., and Rabette, P., Phys. Status Solidi 64, 565 (1981).Google Scholar
15Matzke, Hj. and Whitton, J. L., Can. J. Phys. 44, 995 (1966).CrossRefGoogle Scholar
16Jech, C. and Kelly, R., Phys, J.. Chem. Sol. 30, 465 (1969); 31, 41 (1970).CrossRefGoogle Scholar
17Naguib, H. M., Singleton, J. F., Grant, W. A., and Carter, G., J. Mater. Sci. 8, 1633 (1973).CrossRefGoogle Scholar
18Farlow, G. C., McHargue, C. J., White, C. W., and Appleton, B. R., Radiat. Eff. 97, 257 (1986).CrossRefGoogle Scholar
19McHargue, C. J., Farlow, G. C., Lewis, M. B., and Williams, J. M., Nucl. Instrum. Methods Phys. Res. Sect. B 19/20, 809 (1987).CrossRefGoogle Scholar
20Naramoto, H., White, C. W., Williams, J. M., and McHargue, C. J., Nucl. Instrum. Methods 201/202, 1159 (1983).CrossRefGoogle Scholar
21Hioki, T. A., Itoh, A., Noda, S., Doi, H., Kawamoto, J., Kamigiata, O., Nucl. Instrum. Methods Phys. Res. Sect. B 7/8, 521 (1985); T. A. Hioki, A. Itoh, M. Ohkubo, S. Noda, H. Doi, J. Kawamoto, and O. Kamigiata, J. Mater. Sci. 21, 1321 (1986).CrossRefGoogle Scholar
22Farlow, G. C., White, C. W., McHargue, C. J., and Appleton, B. R. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1984), Vol. 27, p. 395.CrossRefGoogle Scholar
23Chandler, P. J. and Townsend, P. D., Radiat. Eff. Lett. 43, 61 (1979).CrossRefGoogle Scholar
24White, C. W., Farlow, G. C., McHargue, C. J., Sklad, P. S., and Angellini, M. P., Nucl. Instrum. Methods Phys. Res. Sect. B. 7/8, 473 (1985).CrossRefGoogle Scholar
25McHargue, C. J., Mater. Sci. & Eng. 69, 123 (1985).CrossRefGoogle Scholar
26Feldman, L. C., Mayer, J. W., and Picraux, S. T., Materials Analysis By Ion Channeling (Academic Press, New York, 1982), pp. 117135.CrossRefGoogle Scholar
27Wycoff, R. W. G., Crystal Structures (Interscience Publishers, New York, 1963), 2nd ed., Vol. II, pp. 25.Google Scholar
28Phase Diagrams for Ceramists, edited by Levine, L. M., Robbins, C. H., and McMurdi, H. F. (American Ceramic Society, Columbus, OH, 1964).Google Scholar
29Farlow, G. C., White, C. W., McHargue, C. J., and Appleton, B. R., Nucl. Instrum. Methods B 7/8, 541 (1985).CrossRefGoogle Scholar
30McHargue, C. J., Farlow, G. C., Sklad, P. S., White, C. W., Perez, A., Kornilios, N., and Marest, G., Nucl. Instrum. Methods 19/20, 813 (1987).CrossRefGoogle Scholar
31Sklad, P. S., McHargue, C. J., White, C. W., and Farlow, G. C., in High Tech Ceramics, edited by Vineenzini, P. (Elsevier Science Publishers, Amsterdam, 1987), p. 1073.Google Scholar
32Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry (Pergamon Press, New York, 1978), 5th ed., tables beginning on p. 268.Google Scholar
33Freer, R., J. Mater. Sci. 15, 803 (1980).CrossRefGoogle Scholar