Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T16:25:53.820Z Has data issue: false hasContentIssue false

Microstructural development of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis

Published online by Cambridge University Press:  31 January 2011

A. T. Chien
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California 93106
L. Zhao
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California 93106
M. Colic
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California 93106
J. S. Speck
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California 93106
Get access

Abstract

The hydrothermal growth of epitaxial BaTiO3 thin films on single-crystal SrTiO3 substrates occurs by the island growth mode. The aqueous solution chemistry is found to control interfacial characteristics and plays an important role in controlling film formation and faceting. Island faceting can be changed by the introduction of additional cations during synthesis. Electrophoretic data, confirmed by adsorption measurements, show that barium is a potential determining counterion and adsorbs on SrTiO3 surfaces. Initial electrical measurements show that the BaTiO3 films have a dielectric constant of 141 with a loss tangent of 0.9 that decreases with heat treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sheppard, L. M., Ceram. Bull. 71, 85 (1992).Google Scholar
2.Lange, F. F., Science 273, 903 (1996).Google Scholar
3.Laudise, R. A., Chem. Eng. News 65, 30 (1987).Google Scholar
4.Dawson, W., Ceram. Bull. 67, 1673 (1988).Google Scholar
5.Chien, A. T., Speck, J. S., Lange, F. F., Daykin, A., and Levi, C., J. Mater. Res. 10, 1784 (1995).Google Scholar
6.Kajiyoshi, K., Ishizawa, N., and Yoshimura, M., Jpn. J. Appl. Phys. 30, L120 (1991).Google Scholar
7.Chien, A. T., Speck, J. S., and Lange, F. F., J. Mater. Res. 12, 1176 (1997).CrossRefGoogle Scholar
8.Xu, W., Zheng, L., Xin, H., Lin, C., and Okuyama, M., J. Mater. Res. 11, 821 (1996).Google Scholar
9.Yoshirmura, M., Yoo, S. E., Hayashi, M., and Ishizawa, N., Jpn. J. Appl. Phys. 28, L2007 (1989).CrossRefGoogle Scholar
10.Lencka, M. and Riman, R., Chem. Mater. 5, 61 (1993).Google Scholar
11.Bacsa, R., Ravindranathan, P., and Dougherty, J. P., J. Mater. Res. 7, 423 (1992).Google Scholar
12.Osseo-Asare, K., Arriagada, F. J., and Adair, J. H., in Ceramic Transactions, Vol. 1, Ceramic Powder Science II, edited by Messing, G. L., Fuller, E. R. Jr, and Hausner, H. (American Ceramic Society, Westerville, OH, 1988), p. 47.Google Scholar
13.Slamovich, E. and Aksay, I., J. Am. Ceram. Soc. 79, 239 (1996).CrossRefGoogle Scholar
14.Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H., Science 266, 1540 (1994).CrossRefGoogle Scholar
15.Zhao, L., Chien, A. T., Lange, F. F., and Speck, J. S., J. Mater. Res. 11, 1325 (1996).Google Scholar
16.Hennings, D. and Schreinemacher, S., J. Europ. Ceram. Soc. 9, 41 (1992).Google Scholar
17.Zhao, L., Chien, A. T., Lange, F. F., and Speck, J. S., 1997 MRS Spring Proceedings (in press).Google Scholar
18.Vook, R., Int. Metals Rev. 27, 209 (1982).Google Scholar
19.Tarsa, E., Hachfeld, E., Quinlan, F., Speck, J., and Eddy, M., Appl. Phys. Lett. 68, 490 (1996).Google Scholar
20.Seifert, A., Vojta, A., Speck, J. S., and Lange, F. F., J. Mater. Res. 11, 1470 (1996).CrossRefGoogle Scholar
21.Jang, H. and Furstenau, D., Colloids and Surfaces 21, 235 (1986).Google Scholar
22.Farley, K., Dzombak, D., and Morel, F., J. Colloid Interface Sci. 106, 226 (1985).CrossRefGoogle Scholar
23.CRC Handbook of Chemistry and Physics, 59th ed., edited by West, R. C. (CRC Press, Boca Raton, FL, 1978), p. B-99.Google Scholar
24.Tripathi, V., Ph.D. Thesis, Stanford University (1983).Google Scholar
25.Benjamin, M. and Leckie, J., J. Colloid Interface Sci. 83, 410 (1981).Google Scholar
26.Berger, G., Cadore, E., Schott, J., and Dove, P., Geochim. Cosmochim. Acta 58, 541 (1994).CrossRefGoogle Scholar
27.Rajam, S. and Mann, S., J. Chem. Soc. Chem. Commun., 1789 (1990).CrossRefGoogle Scholar
28.Titiloye, J., Parker, S., and Mann, S., J. Chem. Soc. Chem. Commun., 1494 (1991).CrossRefGoogle Scholar
29.Heywood, B. and Mann, S., Adv. Mater. 6, 9 (1994).Google Scholar