Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T05:19:18.588Z Has data issue: false hasContentIssue false

Microstructural evolution and enhanced superplasticity in friction stir processed Mg–Zn–Y–Zr alloy

Published online by Cambridge University Press:  31 January 2011

G.M. Xie
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
Z.Y. Ma*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
L. Geng
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
R.S. Chen
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: zyma@imr.ac.cn
Get access

Abstract

The extruded Mg–Zn–Y–Zr plate was subjected to friction stir processing (FSP). FSP resulted in significant breakup and dispersion of bulky W-phase particles and remarkable grain refinement, thereby substantially enhancing superplasticity. Maximum superplasticity of 635% was achieved at 450 °C and a relatively high strain rate of 3 × 10−3 s−1. By comparison, the as-extruded sample did not exhibit superplasticity. Grain boundary sliding was identified to be the primary deformation mechanism in the FSP Mg–Zn–Y–Zr by superplastic data analyses and surfacial morphology observations. Furthermore, the superplastic deformation kinetics of the FSP Mg–Zn–Y–Zr is significantly faster than that of equal channel angular pressed (ECAP) magnesium alloys under both as-ECAP and annealing conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lu, Y.Z., Wang, Q.D., Ding, W.J., Zeng, X.Q.Zhu, Y.P.: Fracture behavior of AZ91 magnesium alloy. Mater. Lett. 44, 265 2000CrossRefGoogle Scholar
2Xie, G.M., Ma, Z.Y., Geng, L.Chen, R.S.: Microstructural evolution and mechanical properties of friction stir welded Mg– Zn–Y–Zr alloy. Mater. Sci. Eng., A 471, 63 2007CrossRefGoogle Scholar
3Kim, Y.Bae, D.: Superplasticity in a fine-grained Mg– Zn–Y–Zr alloy containing quasicrystalline particles. Mater. Trans. 45, 3298 2004CrossRefGoogle Scholar
4Zheng, M.Y., Xu, S.W., Wu, K., Kamado, S.Kojima, Y.: Superplasticity of Mg-Zn-Y alloy containing quasicrystal phase processed by equal channel angular pressing. Mater. Lett. 61, 4406 2007CrossRefGoogle Scholar
5Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templesmith, P.Dawes, C.J.: GB Patent Application No. 9125978.8, December 1991,Google Scholar
6Mishra, R.S.Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng., R 50, 1 2005CrossRefGoogle Scholar
7Ma, Z.Y., Mishra, R.S.Mahoney, M.W.: Superplastic deformation behaviour of friction stir processed 7075 Al alloy. Acta Mater. 50, 4419 2002CrossRefGoogle Scholar
8Ma, Z.Y., Mishra, R.S., Mahoney, M.W.Grimes, R.: Effect of friction stir processing on the kinetics of superplastic deformation in an Al–Mg–Zr alloy. Metall. Mater. Trans. A 36, 1447 2005CrossRefGoogle Scholar
9Cavaliere, P.De Marco, P.P.: Superplastic behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die cast. J. Mater. Proc. Technol. 184, 77 2007CrossRefGoogle Scholar
10Cavaliere, P.De Marco, P.P.: Friction stir processing of AM60B magnesium alloy sheets. Mater. Sci. Eng., A 462, 393 2007CrossRefGoogle Scholar
11Feng, A.H.Ma, Z.Y.: Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing. Scripta Mater. 56, 397 2007CrossRefGoogle Scholar
12Esparza, J.A., Davis, W.C.Murr, L.E.: Microstructure-property studies in friction-stir welded thixomolded magnesium alloy AM60. J. Mater. Sci. 38, 941 2003CrossRefGoogle Scholar
13Park, S.H.C., Sato, Y.S.Kokawa, H.: Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test. Scripta Mater. 49, 161 2003CrossRefGoogle Scholar
14Xie, G.M., Ma, Z.Y.Geng, L.: Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy. Mater. Sci. Eng., A (in press)Google Scholar
15Zhang, Y., Zeng, X.Q., Liu, L.F., Lu, C., Zhou, H.T., Li, Q.Zhu, Y.P.: Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg–Zn–Y–Zr alloys. Mater. Sci. Eng., A 373, 320 2004CrossRefGoogle Scholar
16Lee, J.Y., Kim, D.H., Lim, H.K.Kim, D.H.: Effects of Zn/Y ratio on microstructure and mechanical properties of Mg– Zn–Y–Zr alloys. Mater. Lett. 59, 3801 2005CrossRefGoogle Scholar
17Figueiredo, R.B.Langdon, T.G.: Development of superplastic ductilities and microstructural homogeneitiy in a magnesium ZK60 alloy processed by ECAP. Mater. Sci. Eng., A 430, 151 2006CrossRefGoogle Scholar
18Bae, D.H., Lee, M.H., Kim, K.T., Kim, W.T.Kim, D.H.: Application of quasicrystalline particles as a strengthening phase in Mg–Zn–Y alloys. J. Alloys Compd. 342, 445 2002CrossRefGoogle Scholar
19Stowell, M.J., Liversy, D.W.Ridley, N.: Cavity coalescence in superplastic deformation. Acta Metall. 32, 35 1984CrossRefGoogle Scholar
20Ma, Z.Y.Mishra, R.S.: Cavitation in superplastic 7075 Al alloys prepared via friction stir processing. Acta Mater. 51, 3551 2003CrossRefGoogle Scholar
21Mabuchi, M., Ameyama, K., Iwasaki, H.Hiagshi, K.: Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries. Acta Mater. 47, 2047 1999CrossRefGoogle Scholar
22Mishra, R.S.Mahoney, M.W.: Friction stir processing: A new grain refinement technique to achieve high strain rate superplasticity in commercial alloys. Mater. Sci. Forum 357–359, 507 2001CrossRefGoogle Scholar
23Norman, A.F., Brough, I.Prangnell, P.B.: High resolution EBSD analysis of the grain structure in an AA2024 friction stir weld. Mater. Sci. Forum 331–337, 1713 2000CrossRefGoogle Scholar
24Charit, I.Mishra, R.S.: High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing. Mater. Sci. Eng., A 359, 290 2003CrossRefGoogle Scholar
25Langdon, T.G.: A unified approach to grain-boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437 1994CrossRefGoogle Scholar
26Watanabe, H., Tsutsui, H., Mukai, T.Aizawa, T.: Realization of superplasticity in magnesium alloy and magnesium based composite. Mater. Jpn. 39, 347 2000CrossRefGoogle Scholar