Published online by Cambridge University Press: 03 March 2011
Microstructural changes induced by electromigration were studied in eutectic SnAg solder bumps jointed to under-bump metallization (UBM) of Ti/Cr–Cu/Cu and pad metallization of Cu/Ni/Au. Intermetallic compounds (IMCs) and phase transformations were observed during a current stress of 1 × 104 A/cm2 at 150 °C. On the cathode/substrate side, some of the (Cuy,Ni1−y)6Sn5 transformed into (Nix,Cu1−x)3Sn4 due to depletion of Cu atoms caused by the electron flow. It is found that both the cathode/chip and anode/chip ends could be failure sites. On the cathode/chip side, the UBM dissolved after current stressing for 22 h, and failure may occur due to depletion of solder. On the anode/chip side, a large amount of (Cuy,Ni1−y)6Sn5 or (Nix,Cu1−x)3Sn4 IMCs grew at the low-current-density area due to the migration of Ni and Cu atoms from the substrate side, which may be responsible for the electromigration failure at this end.