Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-30T22:15:29.716Z Has data issue: false hasContentIssue false

The microstructural evolution of a silver-containing spray deposited 1223 Tl–Ca–Ba–Cu oxide superconductor

Published online by Cambridge University Press:  03 March 2011

C.L. Briant
Affiliation:
Corporate Research and Development Center, General Electric Company, P.O. Box 8, Schenectady, New York 12301
J.A. DeLuca
Affiliation:
Corporate Research and Development Center, General Electric Company, P.O. Box 8, Schenectady, New York 12301
P.L. Karas
Affiliation:
Corporate Research and Development Center, General Electric Company, P.O. Box 8, Schenectady, New York 12301
M.F. Garbauskas
Affiliation:
Corporate Research and Development Center, General Electric Company, P.O. Box 8, Schenectady, New York 12301
J.A. Sutliff
Affiliation:
Corporate Research and Development Center, General Electric Company, P.O. Box 8, Schenectady, New York 12301
D. Kroeger
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

This paper reports a study of the microstructural evolution of Ag-containing 1223 Tl-Ca-Ba-Cu oxide superconductors in spray-deposited films. The films were formed by spray depositing nitrates of Ca, Ba, Cu, and Ag onto a polycrystalline yttria-stabilized zirconia substrate. These deposits were then converted to a mixture of oxides (calcia, calcium-copper oxide, and barium cuprate) and metallic silver by heating in oxygen. When thallium oxide vapor was passed over the film, the thallium was incorporated into the film and the 1223 phase was formed. The evidence strongly suggests that the development of the 1223 superconductor involves the formation of a liquid phase. Our analysis suggests that the initial phase to form a liquid is CaO which contains thallium, barium, copper, and silver. Once this initial liquid is formed, it incorporates more thallium which, in turn, allows it to dissolve other types of oxides present in the film. In this way the liquid spreads across the surface. The equilibrium 1223 phase precipitates from it.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kim, D. H.Grey, K. E., Kampwirth, R. T., Smith, J. C., Richson, D. S., Marks, T. J., Kang, J. H., Talvacchio, J., and Eddy, M., Physica C 177, 431 (1991).CrossRefGoogle Scholar
2Kroeger, D. M. and Goyal, A., JOM 44, 42 (October, 1992).CrossRefGoogle Scholar
3Negama, M., Hikata, T., Kato, T., and Sato, K., Jpn. J. Appl. Phys. 30, L1384 (1991).Google Scholar
4Dou, S. X. and Lin, H. K., Supercon. Sci. Technol. 8, 297 (1993).CrossRefGoogle Scholar
5Ginley, D. S., Kwak, J. F., Venturini, E. L., Morosin, B., and Baughman, R. J., Physica C 160, 42 (1988).CrossRefGoogle Scholar
6Jagannadham, K. and Narayan, I., Mater. Sci. Eng. B 8, 201 (1991).CrossRefGoogle Scholar
7Ginley, D. S., Kwak, J. F., Hellner, R. P., Baughman, R. J., Venturini, E. L., Mitchell, M. A., and Morosin, B., Physica C 156, 592 (1988).CrossRefGoogle Scholar
8Ginley, D. S., Kwak, J. F., Hellner, R. P., Baughman, R. P., Venturini, E. L., and Morosin, B., Appl. Phys. Lett. 53, 406 (1988).CrossRefGoogle Scholar
9DeLuca, J. A., Karas, P. L., Tkaczyk, J. E., Bednarczyk, P. J., Garbauskas, M. F., Briant, C. L., and Sorensen, D. B., Physica C 205, 21 (1993).CrossRefGoogle Scholar
10Kamo, T., Doi, T., Soeta, A., Yuasa, T., Inoue, N., Aihara, K., and Matsuda, S., Appl. Phys. Lett. 59, 3186 (1991).Google Scholar
11Sasoaka, T., Nomoto, A., Seido, M., Doi, T., and Kamo, T., Jpn. J. Appl. Phys. 30, L1868 (1991).CrossRefGoogle Scholar
12Matsuda, S. P., Doi, T., Soeta, A., Yuasa, T., Inoue, N., Aihara, K., and Kamo, T., Jpn. J. Appl. Phys. 59, 3186 (1991).Google Scholar
13Mittag, M., Roseberg, M., Himmerich, B., and Sabrowsky, H., Supercon. Sci. Technol. 4, 244 (1991).CrossRefGoogle Scholar
14Doi, T., Okada, M., Soeta, A., Yuasa, T., Aihara, K., Kamo, T., and Matsuda, M., Physica C 183, 67 (1991).CrossRefGoogle Scholar
15Liu, R. S., Zheng, D. N., Loram, J. W., Mirza, K. A., Campbell, A. M., and Edwards, P. P., Appl. Phys. Lett. 60, 1019 (1992).CrossRefGoogle Scholar
16DeLuca, J. A., Garbauskas, M. F., Bolon, R. B., McMullen, J. G., Balz, W. E., and Karas, P. L., J. Mater. Res. 6, 1415 (1991).CrossRefGoogle Scholar
17Rehren, C., Muhler, M., Bao, X., Schlogl, R., and Ertl, G., Z. Phys. Chem. 174, 11 (1991).CrossRefGoogle Scholar
18Petersen, D. E., Wahlbeck, P. G., Maley, M. P., Willis, J. O., Kung, P. J., Coulter, J. Y., Salazar, K. V., Phillips, D. S., Bingert, J. F., Peterson, E. J., and Hulls, W. L., Physica C 199, 161 (1992).CrossRefGoogle Scholar
19Blaugher, R. D., in Processes and Properties of High Tc Superconductors, edited by Jin, S. (World Scientific, Singapore, 1993).Google Scholar
20Kotani, T., Kaneko, T., Takei, H., and Tada, K., Jpn. J. Appl. Phys. 28, L1378 (1989).CrossRefGoogle Scholar
21Ahn, B. T., Lee, W. Y., and Beyers, R., Appl. Phys. Lett. 60, 2150 (1992).CrossRefGoogle Scholar
22Inoue, O., Adachi, S., and Kawashima, S., Jpn. J. Appl. Phys. 29, L763 (1990).CrossRefGoogle Scholar
23Rubin, L. M., Orlando, T. P., VanderSande, J. B., Gorman, G. L., Savoy, R. J., Swope, R., and Beyers, R., J. Appl. Phys. 61, 1977 (1992).Google Scholar
24Cheung, C. T. and Ruckenstein, E., J. Mater. Res. 5, 1860 (1990).CrossRefGoogle Scholar
25Lanham, M., James, T. W., Eddy, M., Lange, F. F., and Clark, D. R., Appl. Phys. Lett. 62, 3028 (1993).CrossRefGoogle Scholar