Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T20:37:36.706Z Has data issue: false hasContentIssue false

Microstructural evolution of diamond/Si(100) interfaces with pretreatments in chemical vapor deposition

Published online by Cambridge University Press:  03 March 2011

C.J. Chen
Affiliation:
Materials Science Center, National Tsing Hua University, Hsinchu; Taiwan 300, Republic of China
L. Chang
Affiliation:
Division of Engineering and Applied Science. National Science Council, Taipei, Taiwan 10636 Republic of China
T.S. Lin
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Hsinchu. Taiwan 31015, Republic of China
F.R. Chen
Affiliation:
Materials Science Center, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
Get access

Abstract

Diamond was deposited on Si(100) substrates by the microwave plasma-assisted chemical vapor deposition method in three steps: carburization, biasing, and growth. High-resolution transmission electron microscopy in cross-sectional view has been used to observe the evolution of microstructures around the interfacial region between diamond and Si in each processing step. The chemistry near the interface was characterized with elemental mapping using an energy-filtered imaging technique with electron energy loss spectroscopy. An amorphous carbon layer, β-SiC and diamond particles, and graphite plates have been observed in the carburization stage. β-SiC can form in epitaxial orientation with Si in the following stage of biasing. Graphite and amorphous carbon were not observed after the bias was applied. Diamond grains were aligned in a strongly textured condition in the growth stage. It has been found that diamond, SiC, and Si all have (111) planes in parallel. The relation of the evolution of microstructure with the processing conditions is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
2Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
3Stoner, B. R. and Glass, J. T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
4Jiang, X. and Klages, C-P., Diamond Relat. Mater. 2, 1112 (1993).CrossRefGoogle Scholar
5Jiang, X., Klages, C-P., Zachai, R., Hartweg, M., and Fusser, H. J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
6Jiang, X., Schiffmdnn, K., Westphal, A., and Klages, C. P., Appl. Phys. Lett. 63, 1203 (1993).CrossRefGoogle Scholar
7Schreck, M., Hessmer, R., Geier, S., Rauschenbach, B., and Stritzker, B., Diamond Relat. Mater. 3, 510 (1994).CrossRefGoogle Scholar
8Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C.E., and Southworth, P., Appl. Phys. Lett. 62, 12151217 (1993).CrossRefGoogle Scholar
9Stoner, B. R., Sahaida, S. R., Bade, J. P., Southworth, P., and Ellis, P. J., J. Mater. Res. 8, 1334 (1993).CrossRefGoogle Scholar
10Berger, A. and Kohl, H., Microsc. Microanal. Microstruct. 3, 159 (1992).CrossRefGoogle Scholar
11Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1986), p. 335.Google Scholar
12Williams, B.E. and Glass, J.T., J. Mater. Res. 4, 373 (1989).CrossRefGoogle Scholar
13Chang, L., in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Mater. Res. SOC. Symp. Proc. 270, Pittsburgh, PA, 1992), p. 353.Google Scholar
14Shigesato, Y., Boekenhauer, R.E., and Sheldon, B. W., Appl. Phys. Lett. 63, 314 (1993).CrossRefGoogle Scholar
15Yugo, S., Kanai, T., and Kimura, T., Diamond Relat. Mater. 1, 388 (1992).CrossRefGoogle Scholar
16Stoner, B.R., Ma, G-H.M., Wolter, S.D., Zhu, W., Wang, Y.C., Davis, R. F., and Glass, J. T., Diamond Relat. Mater. 2, 142 (1993).CrossRefGoogle Scholar
17Nutt, S.R., Smith, D. J., Kim, H. J., and Davis, R. F., Appl. Phys. Lett. 50, 203 (1987).CrossRefGoogle Scholar
18Stoner, B.R., Ma, C-H.M., Wolter, S.D., and Glass, J.T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
19Chen, C. J., Chang, L., Lin, T. S., and Chen, F.R., unpublished.Google Scholar
20Tzou, Y., Bmley, J., Ernst, F., Rühle, M., and Raj, R., J. Mater. Res. 9, 1566 (1994).CrossRefGoogle Scholar
21van der Drift, A., Philips Res. Rep. 22, 267 (1967).Google Scholar