Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T04:29:19.005Z Has data issue: false hasContentIssue false

Microstructural evolution of metallorganic derived Pt-doped TiO2

Published online by Cambridge University Press:  31 January 2011

Issei Hayakawa
Affiliation:
Fine Ceramics Research Association, Synergy Ceramics Laboratory, 2–4-1, Mutsuno, Atsutaku, Nagoya, 456–8587, Japan
Yuji Iwamoto
Affiliation:
Fine Ceramics Research Association, Synergy Ceramics Laboratory, 2–4-1, Mutsuno, Atsutaku, Nagoya, 456–8587, Japan
Ko-ichi Kikuta
Affiliation:
Graduate School of Engineering, Nagoya University, Nagoya 464–8603, Japan
Shin-ichi Hirano
Affiliation:
Graduate School of Engineering, Nagoya University, Nagoya 464–8603, Japan
Get access

Abstract

A metalorganic precursor containing Ti and Pt was synthesized using Ti alkoxide derivative, amino acid, and platinum salt. The decomposition behavior of the precursor and thin-film formation were examined in terms of microstructure evolution and crystallization. The precursor yielded anatase at 400 °C. Grain growth of platinum particles and TiO2 grains was suppressed even at 800 °C in the films. Suppression of grain growth was attributed to an effect of film thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kirner, U., Schierbaum, K.D., Göpel, W., Leibold, B., Nicoloso, N., Weppner, W., Fisher, D., and Chu, W.F., Sens. Actuators, B 1, 103 (1990).CrossRefGoogle Scholar
2.Birkefeld, L.D., Azad, A.M., and Akbar, S.A., J. Am. Ceram. Soc. 75, 2964 (1992).CrossRefGoogle Scholar
3.Tang, H., Prasad, K., Sanjinés, R., and Lévy, F., Sens. Actuators, B. 26–27, 71 (1995).CrossRefGoogle Scholar
4.Gusmano, G., Traversa, E., and Montenero, A., in Proceedings of the Symposium on Progress in Ceramics Basic Science: Challenge Toward the 21st Century, Inuyama, Japan, March, 1996, pp. 195200.Google Scholar
5.Munuera, G., González-Félipe, A.R., Muñoz, A., Fernández, A., Soria, J., Conesa, J., and Sanz, J., Sens. Actuators 18, 337 (1989).CrossRefGoogle Scholar
6.Poncelet, G., Jacobs, P.A., Grange, P., and Delmon, B., Preparation of Catalysts V (Elsevier Science, Amsterdam, 1991).Google Scholar
7.Kato, K., Tsuzuki, A., Torii, Y., Taoda, H., Kato, T., and Butsugan, Y., J. Mater. Sci. 30, 837 (1995).CrossRefGoogle Scholar
8.Kohno, K., Takeda, Y., Imanishi, N., Sasaki, Y., Sakamoto, K., and Yamamoto, O., J. Am. Ceram. Soc. 76, 192 (1995).CrossRefGoogle Scholar
9.Gratzel, M., Ber. Bunsenges. Phys. Chem. 84, 981 (1980).CrossRefGoogle Scholar
10.Disdier, J., Hermann, J-M., and Pichat, P., J. Chem. Soc., Farady Trans. 1 79, 651 (1983).CrossRefGoogle Scholar
11.Sánchez, E., López, T., Gómez, R., Bokhimi, , Morales, A., and Novaro, O., J. Solid State Chem. 122, 309 (1996).CrossRefGoogle Scholar
12.Kozuka, H. and Sakka, S., Chem. Mater. 5, 222 (1993).CrossRefGoogle Scholar
13.Yoo, D.J., Tamaki, J., Park, S.J., Miura, N., and Yamazoe, N., J. Am. Ceram. Soc. 79, 2201 (1996).CrossRefGoogle Scholar