Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T01:25:11.624Z Has data issue: false hasContentIssue false

Microstructural, mechanical, and electrical characteristics of alumina-reinforced ytterbia-stabilized cubic zirconia-based composites

Published online by Cambridge University Press:  03 March 2011

Masashi Wada*
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogahoka, Ibaraki, Osaka 567-0047, Japan
Tohru Sekino
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogahoka, Ibaraki, Osaka 567-0047, Japan
Takafumi Kusunose
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogahoka, Ibaraki, Osaka 567-0047, Japan
Tadachika Nakayama
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogahoka, Ibaraki, Osaka 567-0047, Japan
Koichi Niihara
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogahoka, Ibaraki, Osaka 567-0047, Japan
*
a) Address all correspondence to this author. e-mail: wada15@sanken.osaka-u.ac.jp
Get access

Abstract

Al2O3-dispersed Yb2O3-stabilized cubic-ZrO2 (YbSZ) composites are fabricated by pressureless sintering of composite powders to obtain fine and homogeneous microstructures by the solution chemistry route. Al2O3 particles are deposited on ZrO2 powders by the precipitation of aluminum nitrate followed by calcination in air. The sinterability of the composites was affected by the calcination temperature. Microstructures of the sintered bodies are dependent on the Al2O3 content. For the5 vol% Al2O3-dispersed composite, fine Al2O3 particles were mainly located insidethe grains of zirconia, whereas relatively large Al2O3 particles almost dispersed at the grain boundaries when the Al2O3 content was increased. The grain growth of YbSZ was suppressed by the Al2O3 addition, and the refinement of the matrix grain improved the fracture strength of YbSZ. The YbSZ and YbSZ/Al2O3 composites exhibited almost similar ionic conductivity at high temperatures of around 1000 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
2Isaacs, H. S. in Science and Technology of Zirconia, edited by Heuer, A.H. and Hobbs, L.W. (Am. Ceram. Soc., USA, 1981), p. 406.Google Scholar
3Logothetis, E.M. in Science and Technology of Zirconia, edited by Heuer, A. H. and Hobbs, L. W. (Am. Ceram. Soc., USA, 1981), p. 388.Google Scholar
4Niihara, K., J. Ceram. Soc. Jpn. 99, 974 (1991).CrossRefGoogle Scholar
5Ohji, T., Nakahira, A., Hirano, T. and Niihara., K., J. Am. Ceram. Soc. 77, 3259 (1994).CrossRefGoogle Scholar
6Nawa, M., Bamba, N., Sekino, T. and Niihara, K., J. Eur. Ceram. Soc. 18,209 (1998).CrossRefGoogle Scholar
7Bamba, N., Choa, Y. H., Sekino, T. and Niihara, K., J. Eur. Ceram. Soc. 18,693 (1998).CrossRefGoogle Scholar
8Bamba, N., Choa, Y-H., Sekino, T. and Niihara, K., Solid State Ionics 111, 171 (1998).CrossRefGoogle Scholar
9Kusunose, T., Sekino, T., Choa, Y-H. and Niihara, K., J. Am. Ceram. Soc. 85,2689 (2002).CrossRefGoogle Scholar
10Nawa, M., Yamazaki, K., Sekino, T. and Niihara, K., J. Mater. Sci. 31, 2849 (1996).CrossRefGoogle Scholar
11Sekino, T., Nakajima, T., Ueda, S. and Niihara, K., J. Am. Ceram. Soc. 80, 1139 (1997).CrossRefGoogle Scholar
12Choa, Y-H., Hayashi, H., Sekino, T. and Niihara, K., Key Eng. Mater. 161–163,419 (1999).Google Scholar
13Nakayama, T., Choa, Y-H., Sekino, T. and Niihara, K., J. Ceram. Soc. Jpn. 108,781 (2000).CrossRefGoogle Scholar
14Kondo, H., Sekino, T., Choa, Y.-H., Kusunose, T., Nakayama, T., Wada, M., Adachi, T. and Niihara, K., J. Nanosci. Nanotechnol. 2, 485 (2002).CrossRefGoogle Scholar
15Nakahira, A., Tamada, H. and Niihara, K., J. Jpn. Soc. Powder Powder Metall. 41, 514 (1994).CrossRefGoogle Scholar
16Suzuki, Y., Sekino, T. and Niihara, K., Scripta Metall. Mater. 33,69 (1995).CrossRefGoogle Scholar
17Yuzaki, A., Kishimoto, A. and Nakamura, Y., Solid State Ionics 109, 273 (1998).CrossRefGoogle Scholar
18Yuzaki, A. and Kishimoto, A., Solid State Ionics 116, 47 (1999).CrossRefGoogle Scholar
19Kvist, A. in Physics of Electrolytes. 1,edited by Hladik, J. (Academic Press, London, U.K., 1972), p. 319.Google Scholar
20Yamamoto, O., Arati, Y., Takeda, Y., Imanishi, N., Mizutani, Y., Kawai, M. and Nakamua, Y., Solid State Ionics 79, 137 (1995).CrossRefGoogle Scholar
21 M. Wada, T. Sekino, T. Kusunose, T. Nakayama, Y. Yamamoto, B-S. Kim, Y-H. Choa, and K. Niihara: Mater. Res. Innovations (in press).Google Scholar
22Pacewska, B. and Keshr, M., Thermochim. Acta 385, 73 (2002).CrossRefGoogle Scholar
23Kibbel, B.W. and Heuer, A.H., J. Am. Ceram. Soc. 69, 231 (1986).CrossRefGoogle Scholar
24Choa, Y-H., Ueda, S. and Niihara, K., Ceram. Trans. 44, 417 (1994).Google Scholar
25Griffith, A.A., R. Soc. London A221, 163 (1924).Google Scholar