Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T03:27:43.685Z Has data issue: false hasContentIssue false

Microstructural studies by transmission electron microscopy of the formation of ultrathin PtSi layers with novel silicidation processes

Published online by Cambridge University Press:  31 January 2011

S. Jin*
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
H. Bender
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
R. A. Donaton
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium and INSYS, Katholieke Universiteit Leuven, Belgium
*
a)Address all correspondence to this author. e-mail: sing@imec.be
Get access

Abstract

Ultrathin and uniform Pt-silicide layers are prepared by electron beam evaporation on a heated silicon substrate and by magnetron sputtering at room temperature followed by rapid thermal annealing (RTP) and selective etching, respectively. In the electron-beam deposited samples, continuous Pt-silicide layers of 6–8 nm thickness are formed after thermal annealing. The interfaces between the silicide layers and the silicon substrate are not atomically flat. In the case of the sputtered Pt, continuous PtSi layers down to 3 nm thick can be produced by using two-step (low-high temperature) and modified two-step (selective etch and high-temperature anneal) RTP silicidation processes. In one-step (high-temperature) processed samples, PtSi is the dominant phase; meanwhile, a small fraction of Pt12Si5 phase is inhomogeneously distributed in the case of thicker PtSi layers. In the two-step RTP processed samples, a Pt/Pt2Si/PtSi/Si layered structure is formed after the first RTP step. The first anneal step is found to be crucial for the roughness and epitaxy of the final PtSi layer. The best Schottky barrier heights are found to be 0.249 eV for the 3 nm PtSi/p-Si(100) Schottky diodes. The e-beam and the sputtered PtSi layers follow different epitaxial growth models.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murarka, S. P., Silicides for VLSI Applications (Academic Press, New York, 1983).Google Scholar
2.Chen, L.J. and Tu, K. N., Mater. Sci. Rep. 6, No. 2–3, 53 (1991).CrossRefGoogle Scholar
3.Maex, K. and Van Rossum, M., EMIS Datareviews Series 14, (1995).Google Scholar
4.Tu, K. N., J. Vac. Sci. Technol. 19, 766 (1981).CrossRefGoogle Scholar
5.Pellegrini, P. W., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R.W., Mantl, S., Schowalter, L. J., and Tu, K. N. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), p. 27.Google Scholar
6.Kavanagh, K. L., Morgan, B. A., Talin, A. A., Ring, K. M., Williams, R. S., Reuter, M. C., and Tromp, R. M., in Silicide Thin Films—Fabrication, Properties, and Applications, edited by Tung, R., Maex, K., Pellegrini, P. W., and Allen, L. H. (Mater. Res. Soc. Symp. Proc. 402, Pittsburgh, PA, 1996), p. 449.Google Scholar
7.Ghozlene, H. B. and Beaufrére, P., J. Appl. Phys. 49, 3998 (1978).CrossRefGoogle Scholar
8.Wang, L.P., Yang, J.R., and Hwang, J., J. Appl. Phys. 74, 6251 (1993).CrossRefGoogle Scholar
9.Tanabe, A., Konuma, K., Teranishi, N., Tohyama, S., and Masubuchi, K., J. Appl. Phys. 69, 850 (1991).CrossRefGoogle Scholar
10.Pellegrini, P.W., Ludington, C. E., and Weeks, M.M., J. Appl. Phys. 67, 1417 (1990).CrossRefGoogle Scholar
11.Konuma, K. and Utsumi, H., J. Appl. Phys. 76, 2181 (1994).CrossRefGoogle Scholar
12.Talin, A. A., Williams, R. S., Morgan, B. A., Ring, K. M., and Kavanagh, K. L., J. Vac. Sci. Technol. B 12, 2634 (1994).CrossRefGoogle Scholar
13.Sinha, A. K., Marcus, R. B., Sheng, T. T., and Haszko, S. E., J. Appl. Phys. 43, 3637 (1972).CrossRefGoogle Scholar
14.Chang, C. A., J. Appl. Phys. 59, 3116 (1986).CrossRefGoogle Scholar
15.Dimitriadis, C. A., Polychroniadis, E. K., Evangelou, E. K., and Giakoumakis, G. E., J. Appl. Phys. 70, 3109 (1991).CrossRefGoogle Scholar
16.Chang, C. A. and Segmüller, A., in Polysilicon Films and Interfaces, edited by Wong, C.Y., Thompson, C.V., and Tu, K.N. (Mater. Res. Soc. Symp. Proc. 106, Pittsburgh, PA, 1988), p. 175.Google Scholar
17.Naem, A. A., J. Appl. Phys. 64, 4161 (1988).CrossRefGoogle Scholar
18.Crider, C. A., Poate, J. M., Rowe, J. E., and Sheng, T. T., J. Appl. Phys. 52, 2860 (1981).CrossRefGoogle Scholar
19.Yokota, Y., Matz, R., and Ho, P.S., in Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W. K. (Mater. Res. Soc. Symp. Proc. 25, Pittsburgh, PA, 1984), p. 435.Google Scholar
20.Bender, H., Roussel, P., Torres, A., Kolodinski, S., Donaton, R. A., Maex, K., and Van der Sluis, P., in Silicide Thin Films—Fabrication, Properties, and Applications, edited by Tung, R., Maex, K., Pellegrini, P.W., and Allen, L. H. (Mater. Res. Soc. Symp. Proc. 402, Pittsburgh, PA, 1996), p. 449.Google Scholar
21.Ishida, S., Murase, K., Gamo, K., and Namba, S., J. Phys. Soc. Jpn. 64, 858 (1995).CrossRefGoogle Scholar
22.Donaton, R. A., Jin, S., Bender, H., Zagrebnov, M., Baert, K., Maex, K., Vantomme, A., and Langouche, G., Microelectron. Eng. 37/38, 507 (1997).CrossRefGoogle Scholar
23.Pretorius, R., Marais, T. K., and Theron, C. C., Mater. Sci. Eng. Rep. 1–2 10, 1 (1990).Google Scholar
24.Massalski, T. B., Binary Alloy Phase Diagrams, 1st ed. (American Society for Metals, Metals Park, OH, 1986).Google Scholar
25.Torres, A., Kolodinski, S., Donaton, R. A., Maex, K., Roussel, P., and Bender, H., Proc. SPIE 2554, 185 (1995).CrossRefGoogle Scholar
26.Hiraki, A., Nicolet, M. A., and Mayer, J. W., Appl. Phys. Lett. 18, 178 (1971).CrossRefGoogle Scholar
27.Donaton, R. A., Jin, S., Bender, H., Zagrebnov, M., Baert, K., Maex, K., Vantomme, A., and Langouche, G., in Rapid Thermal and Integrated Processing VII, edited by Öztürk, M. C., Roozeboom, F., Timans, P. J., and Pas, S. H. (Mater. Res. Soc. Symp. Proc. 525, Warrendale, PA, 1998).Google Scholar
28.Donaton, R. A., Jin, S., Bender, H., Conard, T., De Wolf, I., Maex, K., Vantomme, A., and Langouche, G., unpublished.Google Scholar
29.Das, S. R., Xu, D-X., Phillips, J., McCaffery, J., LeBrun, L., and Naem, A., in Interface Control of Electrical, Chemical, and Mechanical Properties, edited by Murarka, S. P., Rose, K., Ohmi, T., and Seidel, T. (Mater. Res. Soc. Symp. Proc. 318, Pittsburgh, PA, 1994), p. 129.Google Scholar
30.Das, S. R., Sheergar, K., Xu, D-X., and Naem, A., Thin Solid Films 253, 467 (1994).CrossRefGoogle Scholar
31.Ley, L., Wang, Y., Nguyen Van, V., Fisson, S., Souche, D., Vuye, G., and Rivory, J., Thin Solid Films 270, 561 (1995).CrossRefGoogle Scholar
32.Tung, R.T., Phys. Rev. Lett. 52, 461 (1982).CrossRefGoogle Scholar
33.Kikuchi, A., Ohshima, T., and Shiraki, Y., J. Appl. Phys. 64, 4614 (1988).CrossRefGoogle Scholar