Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T01:09:54.097Z Has data issue: false hasContentIssue false

Microstructure and behavior of laser-mixed Cr/Ni films on Cu alloys

Published online by Cambridge University Press:  31 January 2011

C. W. Draper
Affiliation:
A T&T Engineering Research Center, Princeton, New Jersey 08540
J. P. Franey
Affiliation:
A T&T Bell Laboratories, Murray Hill, New Jersey 07974
J. M. Gibson
Affiliation:
A T&T Bell Laboratories, Murray Hill, New Jersey 07974
T. E. Graedel
Affiliation:
A T&T Bell Laboratories, Murray Hill, New Jersey 07974
D. C. Jacobson
Affiliation:
A T&T Bell Laboratories, Murray Hill, New Jersey 07974
G. W. Kammlott
Affiliation:
A T&T Bell Laboratories, Murray Hill, New Jersey 07974
J. M. Poate
Affiliation:
A T&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Deposited thin films of Cr and Ni on Cu substrates have been melted and intermixed with a frequency-doubled Q-switched Nd:YAG laser. The laser pulses melt the thin films and a shallow portion of the substrate. Resolidification interface volocities are on the order of 1–10 m s−1. Rutherford backscattering, Auger spectroscopy, and energy dispersive x-ray mapping have been used to characterize the elemental distribution. Channeling and transmission electron microscopy were used to investigate the microstructure of the surfaces produced. In contrast to the binary Cr–Cu system, where extended solid solutions are produced, the Cr–Ni–Cu system results in a metallic glass surface. We have found that these metallic glass surfaces, which have been dubbed “stainless coppers,” exhibit excellent hydrogen sulfide corrosion resistance. Their contact resistance is low and stable over long periods of time and through tens of thousands of electronic dial switching cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Draper, C. W. and Poate, J. M., Int. Met. Rev. 30, 85 (1985).Google Scholar
2Draper, C. W. and Mazzoldi, P., Laser Surface Treatment of Metals (Martinus Nijhoff, Dordrecht, 1986).Google Scholar
3Draper, C. W., Gold Bull. 19, 8 (1986).Google Scholar
4Hansen, M. and Anderko, K., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), pp. 524525.Google Scholar
5Meijering, J. L., Rathenau, G. W., Steeg, M. G. van der, and Braun, P. B., J. Inst. Met. 84, 118 (19551956).Google Scholar
6Shin, S. M., Rigsbee, J. M., Gillum, W. O., and Draper, C. W. (unpublished data).Google Scholar
7Draper, C. W. and Holliday, A., Appl. Opt. 22, 2521 (1983).Google Scholar
8Franey, J. P., Corros. Sci. 23, 1 (1983).CrossRefGoogle Scholar
9Kammlott, G. W., Appl. Spectrosc. 35, 324 (1981).CrossRefGoogle Scholar
10Draper, C. W., Jacobson, D. C., Gibson, J. M., Poate, J. M., Vandenberg, J. M., and Cullis, A. G., Mater Res. Soc. Symp. Proc. 4, 413 (1982).CrossRefGoogle Scholar
11Sawchyn, I. and Draper, C. W., Appl. Surf. Sci. 18, 86 (1984).CrossRefGoogle Scholar
12Chu, W. K., Mayer, J. M., and Nicolet, M. A., Backscattering Spec-trometry (Academic, New York, 1978).Google Scholar
13Hofmann, S., Surf. Interface Anal. 2, 148 (1980).Google Scholar
I4Hofmann, S. and Zalor, A., Thin Solid Films 60, 201 (1979).CrossRefGoogle Scholar
15Kammlott, G. W., Franey, J. P., and Graedel, T. E., J. Electrochem. Soc. 131, 505 (1984).Google Scholar
16Kammlott, G. W., Franey, J. P., and Graedel, T. E., J. Electrochem. Soc. 131, 511 (1984).CrossRefGoogle Scholar
17Graedel, T. E., in Handbook of Environmental Chemistry, edited by Hutzinger, O. (Springer, Heidelberg, 1980), Vol. 2A, pp. 107143.Google Scholar
18Draper, C. W., Meyer, L. S., Buene, L., Jacobson, D. C., and Poate, J. M., Appl. Surf. Sci. 7, 276 (1981).CrossRefGoogle Scholar
19Pronko, P. P., Weidersich, H., Seshan, K., Helling, A. L., Lo-grasso, T. A., and Baldo, P. M., Mater. Res. Soc. Symp. Proc. 1, 599 (1981).Google Scholar
20Peercy, P. S., Follstaedt, D. M., Picraux, S. T., and Wampler, W. R., Mater. Res. Soc. Symp. Proc. 4, 401 (1982).CrossRefGoogle Scholar
21Jain, A. K., Kulkarni, V. N., and Sood, D. K., Nucl. Instrum. Methods 191, 151 (1981).Google Scholar
22Jain, A. K., Kulkarni, V. N., and Sood, D. K., Thin Solid Films 86, 1 (1981).CrossRefGoogle Scholar
23Picraux, S. T. and Follstaedt, D. M., in Surface Modification and Alloying, edited by Foti, G. and Poate, J. M. (Plenum, New York, 1982), Chap. 11.Google Scholar
24Draper, C. W. and Ewing, C. A., J. Mater. Sci. 19, 3815 (1984).Google Scholar
25Broeder, F. J. A. Den, Vandenberg, J. M., and Draper, C. W., Thin Solid Films 111, 43 (1984).CrossRefGoogle Scholar
26Cottrell, P. T., Frankenthal, R. P., Kammlott, G. M., Siconolfi, D. J., and Draper, C. W., J. Electrochem. Soc. 130, 998 (1983).Google Scholar
27Kaufmann, E. N., Buene, L., MacDonald, M. L., Kotthaus, J., Freitag, K., Vianden, R., and Draper, C. W., Nucl. Instrum. Methods 209/210, 427 (1983).Google Scholar
28Haney, J. P., Kammlott, G. W., and Graedel, T. E., Corros. Sci. 25, 133 (1985).Google Scholar