Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T13:08:23.511Z Has data issue: false hasContentIssue false

The microstructure and corrosion resistance of biological Mg–Zn–Ca alloy processed by high-pressure torsion and subsequently annealing

Published online by Cambridge University Press:  14 March 2017

Congzheng Zhang
Affiliation:
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Shaokang Guan*
Affiliation:
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Liguo Wang
Affiliation:
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Shijie Zhu
Affiliation:
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Lei Chang
Affiliation:
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: skguan@zzu.edu.cn
Get access

Abstract

Magnesium alloy has great potential for bone implantation. However, its corrosion rate is fast in physiological environment. In this paper, biological Mg–Zn–Ca alloy was processed by high pressure torsion (HPT) and subsequently annealed at 90–270 °C for 30 min. The microstructure and corrosion resistance in simulated body fluid were investigated. The results revealed that with the rise of the annealing temperature, the grain size of the HPT alloy gradually increased and the relative diffraction peak intensity of (0002) grain orientation decreased. The amount of second phases increased first and then decreased, while the surface stress decreased first and then increased. All of these changes affected the corrosion rate simultaneously. The corrosion resistance of the HPT alloy increased first and then decreased with the rise of annealing temperature. After annealing at 210 °C for 30 min, the corrosion resistance was the best. Therefore, it was feasible to control the corrosion rate via annealing treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Chen, Y., Xu, Z., Smith, C., and Sankar, J.: Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10(11), 4561 (2014).Google Scholar
Li, N. and Zheng, Y.: Novel magnesium alloys developed for biomedical application: A review. J. Mater. Sci. Technol. 29(6), 489 (2013).CrossRefGoogle Scholar
Xin, Y., Huo, K., Hu, T., Tang, G., and Chu, P.K.: Corrosion products on biomedical magnesium alloy soaked in simulated body fluids. J. Mater. Res. 24(8), 2711 (2009).Google Scholar
Chen, Q. and Thouas, G.A.: Metallic implant biomaterials. Mater. Sci. Eng., R 87, 1 (2015).CrossRefGoogle Scholar
Kirkland, N.T., Birbilis, N., and Staiger, M.P.: Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 8(3), 925 (2012).Google Scholar
Virtanen, S.: Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Mater. Sci. Eng., B 176(20), 1600 (2011).Google Scholar
Atrens, A., Liu, M., and Zainal Abidin, N.I.: Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng., B 176(20), 1609 (2011).Google Scholar
Xin, Y., Hu, T., and Chu, P.K.: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomater. 7(4), 1452 (2011).CrossRefGoogle Scholar
Xin, Y., Liu, C., Zhang, X., Tang, G., Tian, X., and Chu, P.K.: Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J. Mater. Res. 22(7), 2004 (2007).CrossRefGoogle Scholar
Edalati, K., Daio, T., Lee, S., Horita, Z., Nishizaki, T., Akune, T., Nojima, T., and Sasaki, T.: High strength and superconductivity in nanostructured niobium–titanium alloy by high-pressure torsion and annealing: Significance of elemental decomposition and supersaturation. Acta Mater. 80, 149 (2014).CrossRefGoogle Scholar
Reglitz, G., Oberdorfer, B., Fleischmann, N., Kotzurek, J.A., Divinski, S.V., Sprengel, W., Wilde, G., and Würschum, R.: Combined volumetric, energetic and microstructural defect analysis of ECAP-processed nickel. Acta Mater. 103, 396 (2016).Google Scholar
Huang, C.X., Gao, Y.L., Yang, G., Wu, S.D., Li, G.Y., and Li, S.X.: Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing. J. Mater. Res. 21(7), 1687 (2006).Google Scholar
Shi, L., Wu, C.S., Gao, S., and Padhy, G.K.: Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process. Scr. Mater. 119, 21 (2016).Google Scholar
Bachmaier, A., Rathmayr, G.B., Bartosik, M., Apel, D., Zhang, Z., and Pippan, R.: New insights on the formation of supersaturated solid solutions in the Cu–Cr system deformed by high-pressure torsion. Acta Mater. 69, 301 (2014).Google Scholar
Edalati, K. and Horita, Z.: A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng., A 652, 325 (2016).Google Scholar
Minárik, P., Král, R., Čížek, J., and Chmelík, F.E.: Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater. 107, 83 (2016).CrossRefGoogle Scholar
Bahmanpour, H., Sun, Y., Hu, T., Zhang, D., and Wongsa-Ngam, J.: Microstructural evolution of cryomilled Ti/Al mixture during high-pressure torsion. J. Mater. Res. 29(4), 578 (2014).Google Scholar
Edalati, K., Daio, T., Horita, Z., Kishida, K., and Inui, H.: Evolution of lattice defects, disordered/ordered phase transformations and mechanical properties in Ni–Al–Ti intermetallics by high-pressure torsion. J. Alloys Compd. 563, 221 (2013).Google Scholar
Gode, C., Yilmazer, H., Ozdemir, I., and Todaka, Y.: Microstructural refinement and wear property of Al–Si–Cu composite subjected to extrusion and high-pressure torsion. Mater. Sci. Eng., A 618, 377 (2014).Google Scholar
Aal, M.I.A.E. and Kim, H.S.: Wear properties of high pressure torsion processed ultrafine grained Al–7% Si alloy. Mater. Des. 53, 373 (2014).CrossRefGoogle Scholar
Lee, D.H., Choi, I.C., Seok, M.Y., He, J., Lu, Z., Suh, J.Y., Kawasaki, M., Langdon, T.G., and Jang, J.I.: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30(18), 1 (2015).CrossRefGoogle Scholar
Edalati, K., Emami, H., Ikeda, Y., Iwaoka, H., Tanaka, I., Akiba, E., and Horita, Z.: New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium–zirconium system produced by high-pressure torsion. Acta Mater. 108, 293 (2016).Google Scholar
Kai, M., Horita, Z., and Langdon, T.G.: Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 488(1–2), 117 (2008).CrossRefGoogle Scholar
Kratochvíl, J., Kružík, M., and Sedláček, R.: A model of ultrafine microstructure evolution in materials deformed by high-pressure torsion. Acta Mater. 57(3), 739 (2009).Google Scholar
Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(7), 881 (2006).Google Scholar
Edalati, K., Yamamoto, A., Horita, Z., and Ishihara, T.: High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr. Mater. 64(9), 880 (2011).Google Scholar
Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).Google Scholar
Jonas, J.J., Ghosh, C., and Toth, L.S.: The equivalent strain in high pressure torsion. Mater. Sci. Eng., A 607, 530 (2014).Google Scholar
Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103 (2000).CrossRefGoogle Scholar
Kawasaki, M., Ahn, B., Lee, H.J., Zhilyaev, A.P., and Langdon, T.G.: Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding. J. Mater. Res. 31, 1 (2015).Google Scholar
Figueiredo, R.B. and Langdon, T.G.: Development of structural heterogeneities in a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528(13–14), 4500 (2011).Google Scholar
Serre, P., Figueiredo, R.B., Gao, N., and Langdon, T.G.: Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528(10–11), 3601 (2011).CrossRefGoogle Scholar
Alsubaie, S.A., Bazarnik, P., Lewandowska, M., Huang, Y., and Langdon, T.G.: Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion. J. Mater. Res. Technol. 5(2), 152 (2016).CrossRefGoogle Scholar
Meng, F., Rosalie, J.M., Singh, A., Somekawa, H., and Tsuchiya, K.: Ultrafine grain formation in Mg–Zn alloy by in situ precipitation during high-pressure torsion. Scr. Mater. 78–79, 57 (2014).CrossRefGoogle Scholar
Guan, S.K., Ren, Z.W., Gao, J.H., Sun, Y.F., Zhu, S.J., and Wang, L.G.: In vitro degradation of ultrafine grained Mg–Zn–Ca alloy by high-pressure torsion in simulated body fluid. Mater. Sci. Forum 706–709, 504 (2012).Google Scholar
Zhang, C.Z., Zhu, S.J., Wang, L.G., Guo, R.M., Yue, G.C., and Guan, S.K.: Microstructures and degradation mechanism in simulated body fluid of biomedical Mg–Zn–Ca alloy processed by high pressure torsion. Mater. Des. 96, 54 (2016).Google Scholar
Gao, J.H., Guan, S.K., Ren, Z.W., Sun, Y.F., Zhu, S.J., and Wang, B.: Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid. Mater. Lett. 65(4), 691 (2011).Google Scholar
Rennie, L., Court-Brown, C.M., Mok, J.Y., and Beattie, T.F.: The epidemiology of fractures in children. Injury 38(8), 913 (2007).Google Scholar
Spigarelli, S., Regev, M., Evangelista, E., and Rosen, A.: Review of creep behaviour of AZ91 magnesium alloy produced by different technologies. Mater. Sci. Technol. 17(6), 627 (2001).Google Scholar
Aghion, E. and Bronfin, B.: Magnesium alloys development towards the 21st century. Mater. Sci. Forum 350(9), 19 (2000).Google Scholar
Song, G.L. and Atrens, A.: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1(1), 11 (1999).Google Scholar
Shi, Z., Liu, M., and Atrens, A.: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52(2), 579 (2010).Google Scholar
Drynda, A., Hassel, T., Hoehn, R., Perz, A., Bach, F.W., and Peuster, M.: Development and biocompatibility of a novel corrodible fluoride-coated magnesium–calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. J. Biomed. Mater. Res., Part A 93(2), 763 (2010).Google Scholar
Muhammad Saleh, S., Hapipah Mohd, A., Mahmood Ameen, A., and Siddig Ibrahim, A.: Acute oral toxicity evaluations of some zinc(II) complexes derived from 1-(2-salicylaldiminoethyl)piperazine Schiff bases in rats. Int. J. Mol. Sci. 13(2), 1393 (2011).Google Scholar
Zhang, C., Guan, S., Wang, L., Zhu, S., Wang, J., and Guo, R.: Effect of solution pretreatment on homogeneity and corrosion resistance of biomedical Mg–Zn–Ca alloy processed by high pressure torsion. Adv. Eng. Mater. 19(1), doi: 10.1002/adem.201600326 (2017).Google Scholar
Kokubo, T. and Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907 (2006).Google Scholar
Walter, R. and Kannan, M.B.: In vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid. Mater. Lett. 65(4), 748 (2011).Google Scholar
Atrens, A., Song, G.L., Liu, M., Shi, Z., Cao, F., and Dargusch, M.S.: Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 17(4), 400453 (2015).Google Scholar
Zainal Abidin, N.I., Rolfe, B., Owen, H., Malisano, J., Martin, D., Hofstetter, J., Uggowitzer, P.J., and Atrens, A.: The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros. Sci. 75, 354 (2013).Google Scholar
Johnston, S., Shi, Z., and Atrens, A.: The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks’ solution. Corros. Sci. 101, 182 (2015).Google Scholar
Levi, G., Avraham, S., Zilberov, A., and Bamberger, M.: Solidification, solution treatment and age hardening of a Mg–1.6 wt% Ca–3.2 wt% Zn alloy. Acta Mater. 54(2), 523 (2006).CrossRefGoogle Scholar
Du, Y.Z., Qiao, X.G., Zheng, M.Y., Wu, K., and Xu, S.W.: Development of high-strength, low-cost wrought Mg–2.5 mass% Zn alloy through micro-alloying with Ca and La. Mater. Des. 85, 549 (2015).CrossRefGoogle Scholar
Tong, L.B., Zheng, M.Y., Cheng, L.R., Zhang, D.P., Kamado, S., Meng, J., and Zhang, H.J.: Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg–Zn–Ca alloy. Mater. Charact. 104, 66 (2015).Google Scholar
Lu, Y., Bradshaw, A.R., Chiu, Y.L., and Jones, I.P.: Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Mater. Sci. Eng., C 48, 480 (2015).Google Scholar
Gao, X. and Nie, J.F.: Characterization of strengthening precipitate phases in a Mg–Zn alloy. Scr. Mater. 56(8), 645 (2007).Google Scholar
Clark, J.B.: Transmission electron microscopy study of age hardening in a Mg–5 wt% Zn alloy. Acta Metall. 13(12), 1281 (1965).Google Scholar
Cepeda-Jiménez, C.M., García-Infanta, J.M., Zhilyaev, A.P., Ruano, O.A., and Carreño, F.: Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al–7 wt% Si casting alloy deformed by high-pressure torsion. J. Alloys Compd. 509(3), 636 (2011).Google Scholar
Meng, F., Rosalie, J.M., Singh, A., and Tsuchiya, K.: Precipitation behavior of an ultra-fine grained Mg–Zn alloy processed by high-pressure torsion. Mater. Sci. Eng., A 644, 386 (2015).CrossRefGoogle Scholar
Eliezer, D., Aghion, E., and Froes, F.H.: Magnesium science, technology and applications. Adv. Perform. Mater. 5(3), 201 (1998).Google Scholar
Ghali, E., Dietzel, W., and Kainer, K.U.: General and localized corrosion of magnesium alloys: A critical review. J. Mater. Eng. Perform. 13(1), 7 (2004).Google Scholar
Argade, G.R., Panigrahi, S.K., and Mishra, R.S.: Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros. Sci. 58, 145 (2012).Google Scholar
Birbilis, N., Ralston, K.D., Virtanen, S., Fraser, H.L., and Davies, C.H.J.: Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng., Sci. Technol. 45(3), 224 (2010).CrossRefGoogle Scholar
Aung, N.N. and Zhou, W.: Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52(2), 589 (2010).Google Scholar
Zeng, R., Kainer, K.U., Blawert, C., and Dietzel, W.: Corrosion of an extruded magnesium alloy ZK60 component—The role of microstructural features. J. Alloys Compd. 509(13), 4462 (2011).Google Scholar
Laleh, M. and Kargar, F.: Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy. J. Alloys Compd. 509(37), 9150 (2011).Google Scholar
Winzer, N., Atrens, A., Song, G., Ghali, E., Dietzel, W., and Kainer, K.U.: A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater. 7(8), 659 (2005).Google Scholar
Horner, D.A., Connolly, B.J., Zhou, S., Crocker, L., and Turnbull, A.: Novel images of the evolution of stress corrosion cracks from corrosion pits. Corros. Sci. 53(11), 3466 (2011).Google Scholar
Choudhary, L., Szmerling, J., Goldwasser, R., and Raman, R.K.S.: Investigations into stress corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment. Procedia Eng. 10, 518 (2011).Google Scholar
Atrens, A., Winzer, N., Dietzel, W., Srinivasan, P.B., and Song, G.L.: 8-Stress corrosion cracking (SCC) of magnesium (Mg) alloys. In Corrosion of Magnesium Alloys, Song, G.L. ed. (Woodhead Publishing, London, 2011); p. 299.Google Scholar
Liu, M., Qiu, D., Zhao, M., Song, G., and Atrens, A.: The effect of crystallographic orientation on the active corrosion of pure magnesium. Scr. Mater. 58(5), 421 (2008).Google Scholar
Song, G., Mishra, R., and Xu, Z.: Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem. Commun. 12(8), 1009 (2010).Google Scholar
Davepon, B., Schultze, J.W., König, U., and Rosenkranz, C.: Crystallographic orientation of single grains of polycrystalline titanium and their influence on electrochemical processes. Surf. Coat. Technol. 169–170, 85 (2003).Google Scholar
Seré, P.R., Culcasi, J.D., Elsner, C.I., and Di Sarli, A.R.: Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets. Surf. Coat. Technol. 122(2–3), 143 (1999).CrossRefGoogle Scholar
Asgari, H., Toroghinejad, M.R., and Golozar, M.A.: Relationship between (00.2) and (20.1) texture components and corrosion resistance of hot-dip galvanized zinc coatings. J. Mater. Process Technol. 198(1–3), 54 (2008).Google Scholar
Xin, R., Li, B., Li, L., and Liu, Q.: Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt% NaCl. Mater. Des. 32(8–9), 4548 (2011).Google Scholar
Fu, B., Liu, W., and Li, Z.: Calculation of the surface energy of hcp-metals with the empirical electron theory. Appl. Surf. Sci. 255(23), 9348 (2009).Google Scholar
Song, G. and Xu, Z.: Crystal orientation and electrochemical corrosion of polycrystalline Mg. Corros. Sci. 63, 100 (2012).Google Scholar
Song, G.: Recent progress in corrosion and protection of magnesium alloys. Adv. Eng. Mater. 7(7), 563 (2005).Google Scholar
Song, G.L. and Xu, Z.: Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution. Corros. Sci. 54(1), 97 (2012).Google Scholar
Song, G. and Xu, Z.: The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochim. Acta 55(13), 4148 (2010).Google Scholar