Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T15:41:15.550Z Has data issue: false hasContentIssue false

Microstructure and electrical properties of chemical solution deposition (Pb,La)(Zr,Ti)O3 thin films on Pt electrodes

Published online by Cambridge University Press:  31 January 2011

Jeffrey S. Cross
Affiliation:
Fujitsu Laboratories, Ltd., 10-1 Morinosato-wakamiya, Atsugi 243-0197, Japan
Mitsushi Fujiki
Affiliation:
Fujitsu Laboratories, Ltd., 10-1 Morinosato-wakamiya, Atsugi 243-0197, Japan
Mineharu Tsukada
Affiliation:
Fujitsu Laboratories, Ltd., 10-1 Morinosato-wakamiya, Atsugi 243-0197, Japan
Yasutoshi Kotaka
Affiliation:
Fujitsu Laboratories, Ltd., 10-1 Morinosato-wakamiya, Atsugi 243-0197, Japan
Yasuyuki Goto
Affiliation:
Fujitsu Laboratories, Ltd., 10-1 Morinosato-wakamiya, Atsugi 243-0197, Japan
Get access

Abstract

(Pb,La)(Zr,Ti)O3 (PLZT) films with thicknesses of 150 and 225 nm were prepared by the chemical solution deposition method on sputtered Pt/IrO2 coated on SiO2/Si wafers. The annealed films revealed two different microstructures: fined-grained and large-grained. The thinner film had the largest grain size and highest leakage current, whereas the thicker film had small grains and lower leakage. Atomic force microscope images showed that the thinner film had half-domed-shaped grains, which were about one-third thinner at the grain boundary triple points. These triple points also contained a nanocrystalline nonstoichiometric secondary phase, which contributed to high leakage. A model was developed showing differences in crystallization on the basis of grain growth and number of nuclei on the Pt surface. These results indicate the importance of controlling the film microstructure and its relationship to the film electrical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schwartz, R.W., Voigt, J.A., Tuttle, B.A., Payne, D.A., Reichert, T.L., and DaSalla, R.S., J. Mater. Res. 12, 444 (1997).CrossRefGoogle Scholar
2.Lefevre, M.J., Speck, J.S., Schwartz, R.W., Dimos, D., and Lockwood, S.J., J. Mater. Res. 11, 2076 (1996).CrossRefGoogle Scholar
3.Voigt, J.A., Tuttle, B.A., Headley, T.J. and Lamppa, D.L., in Ferroelectric Thin Films IV, edited by Desu, S.B., Tuttle, B.A., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 395.Google Scholar
4.Aoki, K., Fukuda, Y., Numata, K., and Nishimura, A., IEICE Trans. Electron. E81-C, 537 (1998).Google Scholar
5.Brooks, K., Reaney, I.M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).CrossRefGoogle Scholar
6.Chen, S.Y. and Chen, I.W., J. Am. Ceram. Soc. 77, 2332 (1995);CrossRefGoogle Scholar
Chen, S.Y. and Chen, I.W., J. Am. Ceram. Soc. 77, 2337 (1995).CrossRefGoogle Scholar
7.Fox, G.R. and Krupanidhi, S.B., J. Mater. Res. 9, 688 (1994).Google Scholar
8.Seifert, A., Lange, F.F., and Speck, J.S., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
9.Tangantsev, A.K., Landivar, M., Colla, E., and Setter, N., J. Appl. Phys. 74, 2623 (1995).CrossRefGoogle Scholar
10.Lefevre, M.J., Speck, J.S., Schwartz, R.W., Dimos, D., and Lockwood, S.J., J. Mater. Res. 11, 2076 (1997).CrossRefGoogle Scholar
11.Fujiki, M., Cross, J.S., Tsukada, M., Kotaka, Y., Goto, Y., Matsuura, K., Ashida, H., and Otani, S., Integr. Ferroelectr. (1999, in press).Google Scholar
12.Atsuki, T., Soyama, N., Sasaki, G., Yonezawa, T., Ogi, K., Sameshima, K., Hoshiba, K., Nakao, Y., and Kamisawa, A., Jpn. J. Appl. Phys. 33, 51965200 (1994).CrossRefGoogle Scholar
13.Kotaka, Y., Ashida, H., Goto, Y., and Otani, S., Extended Abstracts of the 59th Meeting of the Japanese Society of Applied Physics (Jpn. Soc. Appl. Phys., Tokyo, Japan, 1998), p. 450.Google Scholar
14.Cross, J.S., Fujiki, M., Tsukada, M., Matsuura, K., and Otani, S., Jpn. J. Appl. Phys. Lett. 38(4A), L395 (1999).CrossRefGoogle Scholar