Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T02:37:51.216Z Has data issue: false hasContentIssue false

Microstructure and mechanical behavior of ultrafine-grained Ni processed by different powder metallurgy methods

Published online by Cambridge University Press:  31 January 2011

J. Gubicza*
Affiliation:
Department of Materials Physics, Eötvös University, Budapest H-1117, Hungary
H-Q. Bui
Affiliation:
Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux–Centre National de la Recherche Scientifique, Université Paris 13, 93430 Villetaneuse, France
F. Fellah
Affiliation:
Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux–Centre National de la Recherche Scientifique, Université Paris 13, 93430 Villetaneuse, France
G.F. Dirras
Affiliation:
Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux–Centre National de la Recherche Scientifique, Université Paris 13, 93430 Villetaneuse, France
*
a) Address all correspondence to this author. e-mail: gubicza@metal.elte.hu
Get access

Abstract

Ultrafine-grained samples were produced from a Ni nanopowder by hot isostatic pressing (HIP) and spark plasma sintering (SPS). The microstructure and mechanical behavior of the two specimens were compared. The grain coarsening observed during the SPS procedure was moderated due to a reduced temperature and time of consolidation compared with HIP processing. The smaller grain-size and higher nickel-oxide content in the SPS-processed sample resulted in a higher yield strength. Compression experiments showed that the specimen produced by SPS reached a maximal flow stress at a small strain, which was followed by a long steady-state softening while the HIP-processed sample hardened until failure. It was revealed that the softening of the SPS-processed sample resulted from microcracking along the grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Segal, V.M.Materials processing by simple shear. Mater. Sci. Eng., A 197, 157 1995Google Scholar
2.Valiev, R.Z.Islamgaliev, R.K.Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 2000CrossRefGoogle Scholar
3.Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T.: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58, 33 2006Google Scholar
4.Dubravina, A., Zehetbauer, M.J., Schafler, E., Alexandrov, I.V.: Correlation between domain size obtained by x-ray Bragg profile analysis and macroscopic flow stress in severely plastically deformed copper. Mater. Sci. Eng., A 387–389, 817 2004Google Scholar
5.Sanders, P.G., Youngdahl, C.J., Weertman, J.R.: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng., A 234–236, 77 1997Google Scholar
6.Atkinson, H.V., Davies, S.: Fundamental aspects of hot isostatic pressing: An overview. Metall. Mater. Trans. A 31, 2981 2000Google Scholar
7.Champion, Y., Bernard, F., Guigue-Millot, N., Perriat, P.: Sintering of copper nanopowders under hydrogen: An in situ x-ray diffraction analysis. Mater. Sci. Eng., A 360, 258 2003Google Scholar
8.Gubicza, J., Dirras, G., Szommer, P., Bacroix, B.: Microstructure and flow stress of ultrafine grained aluminum processed by hot isostatic pressing. Mater. Sci. Eng., A 458, 385 2007CrossRefGoogle Scholar
9.Billard, S., Fondere, J.P., Bacroix, B., Dirras, G.F.: Macroscopic and microscopic aspects of the deformation and fracture mechanisms of ultrafine-grained aluminum processed by hot isostatic pressing. Acta Mater. 54, 411 2006Google Scholar
10.Chen, W., Anselmi-Tamburini, U., Garay, J.E., Groza, J.R., Munir, Z.A.: Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of dc pulsing on reactivity. Mater. Sci. Eng., A 394, 132 2005Google Scholar
11.Chaim, R.: Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater. Sci. Eng., A 43, 25 2007Google Scholar
12.Trunec, M., Macaa, K., Shen, Z.: Warm pressing of zirconia nanoparticles by the spark plasma sintering technique. Scr. Mater. 59, 23 2008Google Scholar
13.Paris, S., Gaffet, E., Bernard, F., Munir, Z.A.: Spark plasma synthesis from mechanically activated powders: A versatile route for producing dense nanostructured iron aluminides. Scr. Mater. 50, 691 2004Google Scholar
14.Tepper, F.: Electro-explosion of wire produces nanosize metals. Met. Powder Rep. 53, 31 1998Google Scholar
15.Kwon, Y., Jung, Y., Yavorovsky, N., Illyn, A.: Ultra-fine powder by wire explosion method. Scr. Mater. 44, 2247 2001Google Scholar
16.Ribárik, G., Gubicza, J., Ungár, T.: Correlation between strength and microstructure of ball milled Al-Mg alloys determined by x-ray diffraction. Mater. Sci. Eng., A 387–389, 343 2004Google Scholar
17.Balogh, L., Ribárik, G., Ungár, T.: Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis. J. Appl. Phys. 100, 023512 2006CrossRefGoogle Scholar
18.Zhilyaev, A.P., Kim, B-K., Szpunar, J.A., Baro, M.D., Langdon, T.G.: The microstructural characteristics of ultrafine-grained nickel. Mater. Sci. Eng., A 391, 377 2005Google Scholar
19.Zhao, Y., Topping, T., Bingert, J.F., Thornton, J.J., Dangelewicz, A.M., Li, Y., Liu, W., Zhu, Y., Zhou, Y., Lavernia, E.J.: High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20, 3028 2008CrossRefGoogle Scholar
20.Hasni, B.: Mechanical characterization of fine-grained materials subjected to large deformations under monotoneous and cyclic stresses. M.Sc. Thesis University of Paris Paris, France 2007Google Scholar
21.Field, D.P., True, B.W., Lillo, T.M., Flinn, J.E.: Observation of twin boundary migration in copper during deformation. Mater. Sci. Eng., A 372, 173 2004Google Scholar
22.Müllner, P., Solenthaler, C.: On the effect of deformation twinning on defect densities. Mater. Sci. Eng., A 230, 107 1997Google Scholar
23.Yamakov, V., Wolf, D., Phillpot, S.R., Gleiter, H.: Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 51, 4135 2003Google Scholar
24.Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., Cheng, X.: Deformation twinning in nanocrystalline aluminium. Science 300, 1275 2003Google Scholar
25.Froseth, A., Van Swygenhoven, H., Derlet, P.M.: The influence of twins on the mechanical properties of nc-Al. Acta Mater. 52, 2259 2004CrossRefGoogle Scholar
26.Lu, L., Shen, Y., Chen, X., Qian, L., Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 2004Google Scholar
27.Rémy, L.: Twin-slip interaction in f.c.c. crystals. Acta Metall. 25, 711 1977Google Scholar
28.Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 2005Google Scholar
29.Ovidko, I.A.: Deformation of nanostructures. Science 295, 2386 2002Google Scholar
30.Jia, D., Ramesh, K.T., Ma, E.: Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Mater. 51, 3495 2003Google Scholar
31.Sabirov, I., Estrin, Y., Barnett, M.R., Timokhina, I., Hodgson, P.D.: Tensile deformation of an ultrafine-grained aluminium alloy: Micro shear banding and grain boundary sliding. Acta Mater. 56, 2223 2008CrossRefGoogle Scholar
32.Humphreys, F.J., Martin, J.W.: The effect of dispersed phases upon dislocation distributions in plastically deformed copper crystals. Philos. Mag. 16, 927 1968CrossRefGoogle Scholar
33.Kecskes, L.J., Cho, K.C., Dowding, R.J, Schuster, B.E., Valiev, R.Z., Wei, Q.: Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten. Mater. Sci. Eng., A 467, 33 2007CrossRefGoogle Scholar