Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T19:54:38.717Z Has data issue: false hasContentIssue false

Microstructure and mechanical properties of sub-micron zinc structures

Published online by Cambridge University Press:  22 May 2012

Sumin Jin
Affiliation:
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Sujing Xie
Affiliation:
CAMCOR High Resolution and Analytical Facility, Department of Chemistry, University of Oregon, Eugene, Oregon, 97403-1241
Michael J. Burek*
Affiliation:
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Zeinab Jahed
Affiliation:
Department of Mechanical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Ting Y. Tsui*
Affiliation:
Department of Chemical Engineering, Department of Mechanical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
*
b)Address all correspondence to this author. e-mail: tttsui@uwaterloo.ca
Get access

Abstract

The mechanical properties of submicron scale columnar zinc structures, with average diameters between 130 and 1060 nm, were characterized by uniaxial microcompression tests. The zinc pillars were fabricated by electron beam lithography and electroplating and were found to be generally single crystalline, with a preferred out-of-plane orientation close to the [0001] directions. Post deformation microstructural analysis suggests that the zinc pillars maintain their single-crystalline structure, but without twin boundary formation. Interestingly, the engineering flow stress results indicate that small-scale zinc structures are insensitive to both strain rate and size.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).CrossRefGoogle Scholar
2.Kraft, O., Gruber, P.A., Mönig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).CrossRefGoogle Scholar
3.Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater Sci. 56, 654 (2011).CrossRefGoogle Scholar
4.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).CrossRefGoogle ScholarPubMed
5.Dimiduk, D.M., Uchic, M.D., and Parthasarathy, T.A.: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).CrossRefGoogle Scholar
6.Frick, C.P., Clark, B.G., Orso, S., Schneider, A.S., and Arzt, E.: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319 (2008).CrossRefGoogle Scholar
7.Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).CrossRefGoogle Scholar
8.Greer, J.R. and Nix, W.D.: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A: Mater. Sci. Process. 80, 1625 (2005).CrossRefGoogle Scholar
9.Volkert, C.A., Lilleodden, E.T., Kramer, D., and Weissmuller, J.: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006).CrossRefGoogle Scholar
10.Jennings, A.T., Burek, M.J., and Greer, J.R.: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).CrossRefGoogle ScholarPubMed
11.Kiener, D., Motz, C., Schöberl, T., Jenko, M., and Dehm, G.: Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 1119 (2006).CrossRefGoogle Scholar
12.Ng, K.S. and Ngan, A.H.W.: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).CrossRefGoogle Scholar
13.Kim, J-Y. and Greer, J.R.: Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett. 93, 101916 (2008).CrossRefGoogle Scholar
14.Kim, J-Y., Jang, D., and Greer, J.R.: Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scr. Mater. 61, 300 (2009).CrossRefGoogle Scholar
15.Kim, J-Y., Jang, D., and Greer, J.R.: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355 (2010).CrossRefGoogle Scholar
16.Schneider, A.S., Kaufmann, D., Clark, B.G., Frick, C.P., Gruber, P.A., Mönig, R., Kraft, O., and Arzt, E.: Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, 105501 (2009).CrossRefGoogle ScholarPubMed
17.Han, S.M., Bozorg-Grayeli, T., Groves, J.R., and Nix, W.D.: Size effects on strength and plasticity of vanadium nanopillars. Scr. Mater. 63, 1153 (2010).CrossRefGoogle Scholar
18.Burek, M.J., Budiman, A.S., Jahed, Z., Tamura, N., Kunz, M., Jin, S., Han, S.M.J., Lee, G., Zamecnik, C., and Tsui, T.Y.: Fabrication, microstructure, and mechanical properties of tin nanostructures. Mater. Sci. Eng., A 528, 5822 (2011).CrossRefGoogle Scholar
19.Burek, M.J., Jin, S., Leung, M.C., Jahed, Z., Wu, J., Budiman, A.S., Tamura, N., Kunz, M., and Tsui, T.Y.: Grain boundary effects on the mechanical properties of bismuth nanostructures. Acta Mater. 59, 4709 (2011).CrossRefGoogle Scholar
20.Lilleodden, E.: Microcompression study of Mg (0 0 0 1) single crystal. Scr. Mater. 62, 532 (2010).CrossRefGoogle Scholar
21.Byer, C.M., Li, B., Cao, B., and Ramesh, K.T.: Microcompression of single-crystal magnesium. Scr. Mater. 62, 536 (2010).CrossRefGoogle Scholar
22.Kim, G.S., Yi, S., Huang, Y., and Lilleodden, E.: Twining and slip activity in magnesium <11-20> single crystal, in Mechanical Behavior at Small Scales—Experiments and Modeling, edited by Lou, J., Lilleodden, E., Boyce, B., Lu, L., Derlet, P.M., Weygand, D., Li, J., Uchic, M.D., and Le Bourhis, E. (Mater. Res. Soc. Symp. Proc. Vol. 1224, Warrendale, PA, 2010), 1224-FF05-03.Google Scholar
23.Yu, Q., Shan, Z-W., Li, J., Huang, X., Xiao, L., Sun, J., and Ma, E.: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).CrossRefGoogle ScholarPubMed
24.Sun, Q., Guo, Q., Yao, X., Xiao, L., Greer, J.R., and Sun, J.: Size effects in strength and plasticity of single-crystalline titanium micropillars with prismatic slip orientation. Scr. Mater. 65, 473 (2011).CrossRefGoogle Scholar
25.Ye, J., Mishra, R.K., Sachdev, A.K., and Minor, A.M.: In situ TEM compression testing of Mg and Mg-0.2 wt% Ce single crystals. Scr. Mater. 64, 292 (2011).CrossRefGoogle Scholar
26.Jin, S., Burek, M.J., Evans, N.D., Jahed, Z., and Tsui, T.Y.: Fabrication and plastic deformation of sub-micron cadmium structures. Scr. Mater. 66(9), 619–622 (2012).Google Scholar
27.Greer, J.R. and Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B: Condens. Matter 73, 245410 (2006).CrossRefGoogle Scholar
28.Bei, H., Shim, S., Pharr, G.M., and George, E.P.: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).CrossRefGoogle Scholar
29.Shan, Z.W., Mishra, R.K., Syed Asif, S.A., Warren, O.L., and Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).CrossRefGoogle ScholarPubMed
30.Bei, H., Shim, S., Miller, M.K., Pharr, G.M., and George, E.P.: Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91, 111915 (2007).CrossRefGoogle Scholar
31.Zimmermann, J., Van Petegem, S., Bei, H., Grolimund, D., George, E.P., and Van Swygenhoven, H.: Effects of focused ion beam milling and pre-straining on the microstructure of directionally solidified molybdenum pillars: A Laue diffraction analysis. Scr. Mater. 62, 746 (2010).CrossRefGoogle Scholar
32.Cullity, B.D. and Stock, S.R.: Elements of X-Ray Diffraction. 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2001).Google Scholar
33.Burek, M.J. and Greer, J.R.: Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69 (2010).CrossRefGoogle ScholarPubMed
34.Adams, K.H., Vreeland, T. Jr., and Wood, D.S.: Basal dislocation mobility in zinc single crystals. Mater. Sci. Eng. 2, 37 (1967).CrossRefGoogle Scholar
35.Adams, K.H., Blish, R.C., and Vreeland, T. Jr.: Second-order pyramidal slip in zinc single crystals. Mater. Sci. Eng. 2, 201 (1967).CrossRefGoogle Scholar
36.Rosenbaum, H.S.: Non-basal slip and twin accommodation in zinc crystals. Acta Metall. 9, 742 (1961).CrossRefGoogle Scholar
37.Godavarti, P.S. and Murty, K.L.: Creep anisotropy of zinc using impression tests. J. Mater. Sci. Lett. 6, 456 (1987).CrossRefGoogle Scholar
38.Greer, J., Kim, J-Y., and Burek, M.J.: The in-situ mechanical testing of nanoscale single-crystalline nanopillars. JOM 61, 19 (2009).CrossRefGoogle Scholar
39.Lee, G., Kim, J-Y., Budiman, A.S., Tamura, N., Kunz, M., Chen, K., Burek, M.J., Greer, J.R., and Tsui, T.Y.: Fabrication, structure and mechanical properties of indium nanopillars. Acta Mater. 58, 1361 (2010).CrossRefGoogle Scholar
40.Lee, G., Kim, J-Y., Burek, M.J., Greer, J.R., and Tsui, T.Y.: Plastic deformation of indium nanostructures. Mater. Sci. Eng., A 528, 6112 (2011).CrossRefGoogle Scholar
41.Jahed, Z., Jin, S., Burek, M.J., and Tsui, T.Y.: Fabrication and buckling behavior of polycrystalline palladium, cobalt, and rhodium nanostructures. Mater. Sci. Eng., A 542, 40–48 (2012).Google Scholar
42.Wang, S.C., Zhu, Z., and Starink, M.J.: Estimation of dislocation densities in cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models. J. Microsc. 217, 174 (2005).CrossRefGoogle ScholarPubMed
43.Antonopoulos, J.G., Karakostas, T., Komninou, P., and Delavignette, P.: Dislocation movements and deformation twinning in zinc. Acta Metall. 36, 2493 (1988).CrossRefGoogle Scholar
44.Gilman, J.J.: Deformation of symmetric zinc bicrystals. Acta Metall. 1, 426 (1953).CrossRefGoogle Scholar
45.Kawada, T.: On the plastic deformation of zinc bicrystal I. J. Phys. Soc. Jpn. 6, 362 (1951).CrossRefGoogle Scholar