Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T20:32:35.008Z Has data issue: false hasContentIssue false

Microstructure of QD-like clusters in GaAs/In(As,Bi) heterosystems

Published online by Cambridge University Press:  13 August 2018

Igor A. Likhachev
Affiliation:
National Research Center “Kurchatov Institute”, Moscow 123182, Russia
Igor N. Trunkin
Affiliation:
National Research Center “Kurchatov Institute”, Moscow 123182, Russia
Vladimir I. Tsekhosh
Affiliation:
P.N. Lebedev Physical Institute Russian Academy of Sciences, Moscow 119991, Russia
Grigory V. Prutskov
Affiliation:
National Research Center “Kurchatov Institute”, Moscow 123182, Russia
Ilia A. Subbotin
Affiliation:
National Research Center “Kurchatov Institute”, Moscow 123182, Russia
Alexey V. Klekovkin
Affiliation:
P.N. Lebedev Physical Institute Russian Academy of Sciences, Moscow 119991, Russia; and Institute of Ultrahigh Frequency Semiconductor Electronics of Russian Academy of Sciences, Moscow 117105, Russia
Elkhan M. Pashaev
Affiliation:
National Research Center “Kurchatov Institute”, Moscow 123182, Russia
Alexander L. Vasiliev*
Affiliation:
National Research Center “Kurchatov Institute”, Moscow 123182, Russia; and Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RAS, Moscow 119333, Russia
Igor P. Kazakov
Affiliation:
P.N. Lebedev Physical Institute Russian Academy of Sciences, Moscow 119991, Russia
*
a)Address all correspondence to this author. e-mail: a.vasiliev56@gmail.com
Get access

Abstract

The microstructure of In(As,Bi)/GaAs heterostructures grown by low-temperature molecular beam epitaxy with special attention to the interfaces was studied by scanning/transmission electron microscopy, energy dispersive X-ray microanalysis, and X-ray diffraction and reflectivity. Two samples grown at similar conditions with and without the presence of the Bi-contained layer, formed at 350 °C, are considered. These samples were jointly analyzed to clarify Bi influence on the crystal structure. Two types of QD-like clusters at the GaAs/In(As,Bi) interface were found. The first type exhibited a zinc blend crystal structure, which is typical for A3B5 semiconductors. The second type adopted a tetragonal PbO crystal structure and was found in different orientations. The joint analysis by electron microscopy and X-ray methods demonstrated that the incorporation of Bi atoms into the InAs layer leads to the strain relaxation at the interface in the growth direction. According to electron microscopy data, this strain release is more pronounced around the clusters of the second type.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, L., Zhang, L., Yue, L., Liang, D., Chen, X., Li, Y., Lu, P., Shao, J., and Wang, S.: Novel dilute bismide, epitaxy, physical properties and device application. Crystals 7, 63 (2017).CrossRefGoogle Scholar
Nagaraja, K.K., Mityagin, Y.A., Telenkov, M.P., and Kazakov, I.P.: GaAs(1−x)Bix: A promising material for optoelectronics applications. Crit. Rev. Solid State Mater. Sci. 42, 239 (2017).CrossRefGoogle Scholar
Pandya, G.R. and Vyas, S.M.: Characteristic growth features and etching of InBi single crystals. Cryst. Res. Technol. 28, 163 (193).CrossRefGoogle Scholar
Keen, B., Makin, R., Stampe, P.A., Kennedy, R.J., Sallis, S., Piper, L.J., McCombe, B., and Durbin, S.M.: Growth parameters for thin film InBi grown by molecular beam epitaxy. J. Electron. Mater. 43, 914 (2014).CrossRefGoogle Scholar
Dominguez, L., Reyes, D.F., Bastiman, F., Sales, L.D., Richards, R.D., Mendes, D., David, J.P.R., and Gonzalez, D.: formation of tetragonal InBi clusters in InAsBi/InAs(100) heterostructures grown by molecular beam epitaxy. Appl. Phys. Express 6, 112601 (2013).CrossRefGoogle Scholar
Luna, E., Wu, M., Hanke, M., Puustinen, J., Guina, M., and Trampert, A.: Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1−xBix/GaAs quantum wells. Nanotechnology 27, 325603 (2016).CrossRefGoogle Scholar
Wu, M., Luna, E., Puustinen, J., Guina, M., and Trampert, A.: Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi. Nanotechnology 25, 205605 (2014).CrossRefGoogle ScholarPubMed
Reyes, D.F., González, D., Bastiman, F., Dominguez, L., Hunter, C.J., Guerrero, E., Roldan, M.A., Mayoral, A., David, J.P.R., and Sales, D.L.: Photoluminescence enhancement of InAs(Bi) quantum dots by Bi clustering. Appl. Phys. Express 6, 042103 (2013).CrossRefGoogle Scholar
Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J.R.: Scanning Electron Microscopy and X-Ray Microanalysis (Plenum Press, New York, 1981).CrossRefGoogle Scholar
Afanas’ev, A.M., Aleksandrov, P.A., and Imamov, R.M.: X-Ray Diffraction Diagnostics of Submicron Layer (Nauka, Moscow, USSR, 1989). (in Russian).Google Scholar
Bowen, D.K. and Tanner, B.K.: High Resolution X-Ray Diffractometry and Topography (Taylor & Francis, London, England, 1998).Google Scholar
Chuev, M.A., Pashaev, E.M., Koval’chuk, M.V., and Kvardakov, V.V.: Phase relations and the shape of the X-ray rocking curves from heterostructures with quantum wells. JETP Lett. 90, 186 (2009).CrossRefGoogle Scholar
Daillant, J. and Gibaud, A., eds.: X-Ray and Neutron Reflectivity: Principles and Applications; Lecture Notes in Physics, Vol. 770 (Springer, Berlin, Heidelberg, 2009).CrossRefGoogle Scholar
Pashaev, E., Chuev, M., Kvardakov, V., Subbotin, I., and Golovanov, A.: X-ray characterization of magnetic digital alloys. Int. J. Mater. Res. 100, 1197 (2009).CrossRefGoogle Scholar
Hayashi, K.: Review of the applications of X-ray refraction and the X-ray waveguide phenomenon to estimation of film structures. J. Phys.: Condens. Matter 22, 474006 (2010).Google ScholarPubMed
Zaumseil, P., Krüger, D., Kurps, R., Fursenko, O., and Formanek, P.: Precise measurement of Ge depth profiles in SiGe HBT’s—A comparison of different methods. Solid State Phenom. 95–96, 473 (2004).Google Scholar
Kiel, M., Mitzscherling, S., Leitenberger, W., Santer, S., Tiersch, B., Sievers, T.K., Mohwald, H., and Bargheer, M.: Structural characterization of a spin-assisted colloid-polyelectrolyte assembly: Stratified multilayer thin films. Langmuir 26, 18499 (2010).CrossRefGoogle ScholarPubMed
Bobyl, A.V., Gutkin, A.A., Brunkov, P.N., Zamoryanskaya, I.A., Yagovkina, M.A., Musikhin, Y.G., Sakseev, D.A., Konnikov, S.G., Maleev, N.A., Ustinov, V.M., Kopjev, P.S., Punin, V.T., Ilkaev, R.I., and Alferov, Z.I.: The X-ray diffractometry and electron microscopy study of the γ-radiation influence on AlGaAs/InGaAs/GaAs multilayer heterostructures. Semiconductors 40, 687 (2006).CrossRefGoogle Scholar
Rzaev, M.M., Kazakov, I.P., Kozlovski, V.I., Skasyrsky, Y.K., Onishchenko, E.E., Schäffler, F., Hesser, G., Pashaev, E.M., and Soubbotin, I.A.: Growth, structural and optical studies of CdSe/ZnSe nanostructures grown by MBE on GaAs and Si substrates. Phys. Status Solidi C 3, 536 (2006).CrossRefGoogle Scholar
Chesnokov, Y.M., Vasiliev, A.L., Prutskov, G.V., Pashaev, E.M., Subbotin, I.A., Kravtsov, E.A., and Ustinov, V.V.: Microstructure of periodic metallic magnetic multilayer systems. Thin Solid Films 632, 79 (2017).CrossRefGoogle Scholar
Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy. A Textbook for Materials Scince (Springer Science + Business Media, New York, 2009); pp. 379381.CrossRefGoogle Scholar
Kubiak, R.: Röntgenographische Untersuchungen der intermetallischen Phasen In5Bi3, In2Bi, und InBi zwischen +60 und −135 °C. Z. Anorg. Allg. Chem. 431, 261 (1977).CrossRefGoogle Scholar
Stadelmann, P.A.: EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131145 (1987).CrossRefGoogle Scholar
Aronzon, B.A., Pankov, M.A., Rylkov, V.V., Meilikhov, E.Z., Lagutin, A.S., Pashaev, E.M., Chuev, M.A., Kvardakov, V.V., Likhachev, I.A., Vihrova, O.V., Lashkul, A.V., Lahderanta, E., Vedeneev, A.S., and Kervalishvili, P.: Ferromagnetism of low-dimensional Mn-doped III–V semiconductor structures in the vicinity of the insulator-metal transition. J. Appl. Phys. 107, 023905 (2010).CrossRefGoogle Scholar
Gutakovsky, A.K., Chuvilin, A.L., and Song, S.A.: Application of high-resolution electron microscopy for imaging and quantitative analysis of deformation fields in heterosystems. Bull. Russ. Acad. Sci. Phys. 71, 1426 (2007).CrossRefGoogle Scholar