Hostname: page-component-5f745c7db-nc56l Total loading time: 0 Render date: 2025-01-06T23:51:42.518Z Has data issue: true hasContentIssue false

Microstructure of TiO2 rutile thin films deposited on (110) α−Al2O3

Published online by Cambridge University Press:  31 January 2011

Y. Gao
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
K.L. Merkle
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
H.L.M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
T.J. Zhang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
D.J. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

TiO2 rutile thin films grown on (110) sapphire (α−Al2O3) by the MOCVD technique have been characterized by transmission electron microscopy (TEM) and high resolution electron microscopy (HREM). The TiO2 rutile thin films grew on the sapphire with two epitaxial orientations. The epitaxial orientation relationships between the rutile films (R) and the sapphire substrate (S) were found to be (1) (101)[010]R ‖ (110)[0001]s. Detailed atomic structures of near-interface regions have been investigated by HREM, providing a clear picture of the initial stage of film growth. HREM images show that about 70% of the nuclei at the interface are the (101) rutile, but most of them are very small, about 5 nm (or 2% of the film thickness) in the growth direction. The film growth was dominated by the (200) orientation. Nucleation and growth of the films will be discussed in terms of the lattice mismatch at the interface and growth rates along the two orientations. Planar defects such as twin boundaries and special grain boundaries are commonly observed in the films, especially in regions close to the substrate. The twin plane and twinning direction are {101} and 〈101〉, respectively. Special grain boundaries are found to be correlated with nucleation and twinning.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Goto, K. S., Solid State Electrochemistry and Its Applications to Sensors and Electronic Devices (Elsevier, New York, 1988).Google Scholar
2.Yeung, K. S. and Lam, Y. W., Thin Solid Films 109, 169 (1983).CrossRefGoogle Scholar
3.Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
4.Chang, H. L. M., Parker, J. C., You, H., Xu, J. J., and Lam, D. J., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 343.Google Scholar
5.Hayashi, S. and Hirai, T., J. Cryst. Growth 36, 157 (1976).CrossRefGoogle Scholar
6.Cheng, D. J., Sun, W. P., and Hon, M. H., Thin Solid Films 109, 45 (1987).CrossRefGoogle Scholar
7.Yokozawa, M., Iwasa, H., and Teramoto, I., Jpn. J. Appl. Phys. 7, 96 (1968).CrossRefGoogle Scholar
8.Fitzgibbons, E. T., Sladek, K. J., and Hartwig, W. H., J. Electrochem. Soc. 119, 92 (1972).CrossRefGoogle Scholar
9.Fuyuki, T., Kobayashi, T., and Matsunami, H., J. Electrochem. Soc. 135, 248 (1988).CrossRefGoogle Scholar
10.Takahashi, Y., Suzuki, H., and Nasu, M., J. Chem. Soc, Faraday Trans. 1 81, 3117 (1985).CrossRefGoogle Scholar
11.Siefering, K. L. and Griffin, G. L., J. Electrochem. Soc. 137, 814 (1990).CrossRefGoogle Scholar
12.Gao, Y., Merkle, K. L., Chang, H. L. M., Zhang, T. J., and Lam, D. J., in Defects in Materials, edited by Bristowe, P. D., Epperson, J. E., Griffith, J. E., and Liliental-Weber, Z. (Mater. Res. Soc. Symp.Proc. 209, Pittsburgh, PA, 1991), p. 685.Google Scholar
13.Hyde, B. G. and Anderson, S., Inorganic Crystal Structures (John Wiley & Sons, New York, 1989).Google Scholar
14.Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals (Butterworth's, London, 1967).Google Scholar
15.Matthews, J. W., Epitaxial Growth (Academic Press, New York,1975).Google Scholar
16.Gao, Y. and Chang, H. L. M., unpublished research.Google Scholar