Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T23:37:49.197Z Has data issue: false hasContentIssue false

Microstructure of YBa2Cu3O7−x thin films deposited by laser evaporation

Published online by Cambridge University Press:  31 January 2011

O. Eibl
Affiliation:
Siemens Research Laboratories, Otto Hahn Ring 6, D-8000 Munich 83, Germany
B. Roas
Affiliation:
Siemens Research Laboratories, Paul Gossen Strasse 100, D-8520 Erlangen, and Physikalisches Institut, Universität Erlangen, D-8520 Erlangen, Germany
Get access

Abstract

YBa2Cu3O7−x thin films deposited by laser evaporation were studied by transmission electron microscopy. The crystal structure and microstructure of the films depend sensitively on the oxygen partial pressure during deposition. Cooling conditions affect primarily the oxygen sublattice and thus determine electrical properties in the superconducting state. Deposition of technologically relevant thin films requires an oxygen partial pressure of 0.3 mbar during deposition and slow cooling in an oxygen atmosphere. Such films have a Tc of 90 K and a transition width of 0.6 K. Electron diffraction patterns yielded a relative lattice parameter difference (b − a)/b of 1.6%, from which the oxygen content can be determined with considerable accuracy. Extended crystal defects and second phases were analyzed by analytical and high-resolution electron microscopy. Films deposited at lower oxygen partial pressures (≍10−2 mbar) exhibit a strongly strained crystal structure with lattice planes heavily bent on an atomic scale. In these films evidence for a decomposition reaction of YBa2Cu3O7−x was found by the simultaneous presence of BaCu2O2 grains and Y2O3 precipitates. The films deposited at low oxygen partial pressure become superconducting when cooled slowly in an oxygen atmosphere. The onset of the broad transitions lies at 50 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Roas, B., Schultz, L., and Endres, G., Appl. Phys. Lett. 53, 1557 (1988).CrossRefGoogle Scholar
2Li, H. C., Linker, G., Ratzel, F., Smithey, R., and Geerk, J., Appl. Phys. Lett. 52, 1098 (1988).CrossRefGoogle Scholar
3Terashima, T., Iijima, K., Yamamoto, K., Bando, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L91 (1988).CrossRefGoogle Scholar
4Dutta, B., Wu, X. D., Inam, A., and Venkatesan, T., Solid State Technol. 32, 106 (February 1989).CrossRefGoogle Scholar
5Leskelä, M., Truman, J. K., Mueller, C.H., and Holloway, P., J. Vac. Sci. Technol. A7, 3147 (1989).CrossRefGoogle Scholar
6Tietz, L.A., Carter, C.B., Lathrop, D. K., Russek, S. E., Buhrman, R. A., and Michael, J. R., J. Mater. Res. 4, 1072 (1989).CrossRefGoogle Scholar
7Ramesh, R., Hwang, D. M., Barner, J. B., Nazar, L., Ravi, T. S., Inam, A., Dutta, B., Wu, X. D., and Venkatesan, T., J. Mater. Res. 5, 704 (1990).CrossRefGoogle Scholar
8Ramesh, R., Hwang, D. M., Venkatesan, T., Ravi, T. S., Nazar, L., Inam, A., Wu, X.D., Dutta, B., Thomas, G., Marshall, A.F., and Geballe, T. H., Science 247, 57 (1990).CrossRefGoogle Scholar
9Cava, R. J., Batlogg, B., Sunshine, S.A., Siegrist, T., Fleming, R.M., Rabe, K., Schneemeyer, L. F., Murphy, D.W., van Dover, R. B., Gallagher, P. K., Glarum, S. H., Nakahara, S., Farrow, R. C., Krajewski, J. J., Zahurak, S. M., Waszczak, J.V., Marshall, J. H., Marsh, P., Rupp, L.W., Peck, W.F., and Rietman, E.A., Physica C153–155, 560 (1988).CrossRefGoogle Scholar
10Teske, and Müller-Buschbaum, H-K., Z. Naturforsch. B27, 296 (1972).CrossRefGoogle Scholar
11Sreedhar, K., Ramakrishnan, T.V., and Rao, C. N. R., Solid State Commun. 63, 835 (1987).CrossRefGoogle Scholar
12Eibl, O., Gieres, G., and Behner, H., Proc. 47th annual meeting of the EMSA (1989), p. 172.Google Scholar
13Jou, C. J. and Washburn, J., J. Mater. Res. 4, 795 (1989).CrossRefGoogle Scholar