Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T02:57:40.318Z Has data issue: false hasContentIssue false

Microstructure-property relations in tungsten bronze lead barium niobate, Pb1−xBaxNb2O6

Published online by Cambridge University Press:  31 January 2011

C.A. Randall
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, Pennsylvania 16802
R. Guo
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, Pennsylvania 16802
A.S. Bhalla
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, Pennsylvania 16802
L.E. Cross
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, Pennsylvania 16802
Get access

Abstract

Transmission electron microscopy (TEM) has been used to explore details of the structural phase transitions and corresponding microstructural features in the solid solution of Pb1−xBaxNb2O6 (PBN) tungsten bronze ferroelectrics at compositions embracing the morphotropic phase boundary between orthorhombic and tetragonal ferroelectric phases. In addition to the ferroelectric domain structures that were consistent with the expected symmetries, incommensurate ferroelastic phases were observed. The “onset” and “lock-in” transition temperatures are a function of the Pb/Ba ratio, and for lead-rich compositions it appears that the incommensurate distortion may occur above the ferroelectric Curie temperature in the paraelectric phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977).Google Scholar
2.Subbarao, S. C., Shirane, G., and Jona, F., Acta Cryst. 13, 226 (1960).CrossRefGoogle Scholar
3.Jamieson, P. B., Abrahams, S. C., and Bernstein, J. L., J. Chem. Phys. 48, 5048 (1968).CrossRefGoogle Scholar
4.Bornstein, Landolt, Ferroelectric and Antiferroelectric Substances (Springer-Verlag, New York, 1969).Google Scholar
5.Vainshtein, B. K., Fridkin, V. M., and Indebom, V. L., Modern Crystallography II (Springer-Verlag, Berlin, Heidelberg, New York, 1982).CrossRefGoogle Scholar
6.Aizu, K., Phys. Rev. 140 (2A), A590 (1965).CrossRefGoogle Scholar
7.Shuvalov, L. A., J. Phys. Soc. Jpn. 285, 38 (1970).Google Scholar
8.Schneck, J. and Denoyer, F., Phys. Rev. B 23, 383, (1981).CrossRefGoogle Scholar
9.Schneck, J., Toledano, J. C., Whatmore, R. W., and Ainger, F. W., Ferroelectrics 36, 327 (1981).CrossRefGoogle Scholar
10.Manolikas, C., Phys. Status Solidi (a) 68, 653 (1981).CrossRefGoogle Scholar
11.Bursill, L. A. and Peng, J. L., Philos. Mag. B 54 (2), 157 (1986).CrossRefGoogle Scholar
12.Janssen, T. and Janner, A., Adv. Phys. 36 (5), 519 (1987).CrossRefGoogle Scholar
13.Manolikas, C., Schneck, J., Toledano, J. C., Kiat, J. M., and Calvin, G., Phys. Rev. B 35 (16), 8884 (1987).CrossRefGoogle Scholar
14.Pan, X. Q., Hu, H. S., Yao, M. H., and Feng, D., Phys. Status Solidi (a) 91, 57, (1985).Google Scholar
15.Barre, S., Murka, H., and Roneau, C., Phys. Rev. B 38 (13), 9113 (1988).CrossRefGoogle Scholar
16.Peng, J. L. and Bursill, L. A., Acta Cryst. B 43, 504 (1987).CrossRefGoogle Scholar
17.Vermerft, M., Van Tendeloo, G., Landupt, J. V., and Amelinckx, S., Ferroelectrics 88, 2736 (1988).CrossRefGoogle Scholar
18.Oliver, W. F. and Scott, J. F., 1st USA-USSR Meeting on Ferro-electrics, Colorado (1989).Google Scholar
19.Francombe, M. H., Acta Cryst. 13, 131 (1960).CrossRefGoogle Scholar
20.Subbarao, E. C., Shirane, G., and Jong, F., Acta Cryst. 13, 226 (1960).CrossRefGoogle Scholar
21.Guo, R., Bhalla, A.S., Randall, C. A., Chang, Z. P., and Cross, L. E., J. Appl. Phys. 67 (3), 1453 (1990).CrossRefGoogle Scholar
22.Cross, L. E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
23.Guo, R., Bhalla, A. S., Randall, C. A., and Cross, L. E., J. Appl. Phys. 67 (10), 6405 (1990).CrossRefGoogle Scholar
24.Smolenskii, G. A., J. Phys. Soc. Jpn. 28 (Suppl.), 26 (1970).Google Scholar
25.Guo, R., Ph.D. Thesis, The Pennsylvania State University, University Park, PA (1990).Google Scholar
26.Gevers, R., Blank, H., and Amelinckx, S., Phys. Status Solidi 13, 449 (1966).CrossRefGoogle Scholar
27.Randall, C. A., Barber, D. J., and Whatmore, R. W., Microsc., J 45, 275 (1987).Google Scholar
28.Randall, C. A., Barber, D. J., Whatmore, R. W., and Groves, P., Ferroelectrics 76, 265 (1987).Google Scholar
29.Fung, K. K., McKernan, S., Steeds, J. W., and Wilson, J. A., J. Appl. Phys. C 14, 5417 (1981).Google Scholar
30.Weigel, D., Phase Transitions 16/17, 341 (1989).CrossRefGoogle Scholar
31.Guo, R., McHenry, D. A., Bhalla, A. S., and Cross, L. E. (in preparation).Google Scholar