Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:29:41.833Z Has data issue: false hasContentIssue false

Microstructures of two-phase Ti–Cr alloys containing the TiCr2 Laves phase intermetallic

Published online by Cambridge University Press:  31 January 2011

Katherine C. Chen
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Samuel M. Allen
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
James D. Livingston
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

Microstructures of two-phase Ti–Cr alloys (Ti-rich bcc + TiCr2 and Cr-rich bcc + TiCr2) are analyzed. A variety of TiCr2 precipitate morphologies is encountered with different nominal alloy compositions and annealing temperatures. Lattice constants and crystal structures are determined by x-ray diffraction (XRD) and transmission electron microscopy (TEM). Orientation relationships between the beta bcc solid solution and C15 TiCr2 Laves phase are understood in terms of geometrical packing, and are consistent with a Laves phase growth mechanism involving twinning.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Livingston, J. D., Phys. Status Solidi (a) 131, 415 (1992).CrossRefGoogle Scholar
2.Kumar, K. S. and Miracle, D. B., Intermetallics 2, 257 (1994).CrossRefGoogle Scholar
3.Chen, K. C., Allen, S. M., and Livingston, J. D., in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), p. 373.Google Scholar
4.Chen, K. C., Ph.D. Thesis, MIT (1996).Google Scholar
5.Murray, J. L., Binary Alloy Phase Diagrams 10, 219 (1989).Google Scholar
6.Blackburn, M. J. and Williams, J. C., Trans. TMS-AIME 239, 287 (1967).Google Scholar
7.Cuff, F. B., Grant, N. J., and Floe, C. F., J. Metals 194, 848 (1952).Google Scholar
8.Rudy, E., Technical Rept. AFML-TR-65–2 (1969), as reported by J. L. Murray, BAPD 2, 174 (1981).Google Scholar
9.Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon Press, New York, 1958).Google Scholar
10.Kumar, K. S. and Hazzledine, P. M., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Baker, I., Hanada, S., Noebe, R. D., and Schwartz, D. S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 1383.Google Scholar
11.Lifshitz, I. M. and Slyozov, U. V., J. Chem. Phys. Solids 19, 35 (1961).Google Scholar
12.Lee, H. L. and Aaronson, H. I., J. Mater. Sci. 23, 150 (1988).CrossRefGoogle Scholar
13.Aaronson, H. I., Triplett, W. B., and Andes, G. M., Trans. Metall. Soc. AIME 218, 331 (1960).Google Scholar
14.Hardy, S. C. and Voorhees, P. W., Metall. Trans. 19A, 2713 (1988).CrossRefGoogle Scholar
15.Chen, K. C., Allen, S. M., and Livingston, J. D., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Baker, I., Hanada, S., Noebe, R. D., and Schwartz, D. S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 1401.Google Scholar
16.Thoma, D. J. and Perepezko, J. H., Mater. Sci. Eng. A156, 97 (1992).CrossRefGoogle Scholar
17.Van Thyne, R. J., Kessler, H. D., and Hansen, M., Trans. ASM 44, 974 (1952).Google Scholar
18.Chu, F., Ph.D. Thesis, U. Penn. (1993).Google Scholar
19.Bennett, A. I. and Longini, R. L., Phys. Rev. 116, 53 (1959).CrossRefGoogle Scholar
20.Hamilton, D. R. and Seidensticker, R. G., J. Appl. Phys. 31, 1165 (1960).Google Scholar
21.Crosky, A., McDougall, P. G., and Bowles, J. S., Acta Metall. 28, 1495 (1980).CrossRefGoogle Scholar
22.Dahmen, U., Metall. Trans. 25A, 1857 (1994).CrossRefGoogle Scholar
23.Wayman, C. M., Introduction to the Crystallography of Martensitic Transformations (Macmillan, New York, 1964).Google Scholar
24.Khachaturyan, A. G., Theory of Structural Transformation in Solid (John Wiley & Sons, New York, 1983).Google Scholar
25.Aaronson, H. I., Liard, C., and Kinsman, K. R., Phase Transformations (ASM, Metals Park, OH, 1970).Google Scholar
26.Kalonji, G., Ph.D. Thesis, MIT (1982).Google Scholar
27.Chen, G., Chen, J. K., Lee, J. K., and Reynolds, W. T., Jr., Metall. Trans. 25A, 2073 (1994).CrossRefGoogle Scholar
28.Luo, C. P. and Weatherly, G. C., Acta Metall. 35, 1963 (1987); G. C. Weatherly and W. Z. Zhang, Metall. Trans. 25A, 1865 (1994).CrossRefGoogle Scholar
29.Fehrenbach, J., Kerr, H. W., and Niessen, P., J. Cryst. Growth 18, 151 (1973).Google Scholar
30.Bewlay, B. P., Sutliff, J. A., Jackson, M. R., and Lipsitt, H. A., Acta Metall. et Mater. 42, 2869 (1994).Google Scholar
31.Bywater, K. A. and Dyson, D. J., Metal Science 9, 155 (1975).Google Scholar
32.Dahmen, U., Acta Metall. 30, 63 (1982).CrossRefGoogle Scholar
33.Greenough, R. D. and Schulze, M. P., in Intermetallic Compounds: Principles and Practice, edited by Westbrook, J. H. and Fleischer, R. L. (John Wiley & Sons, New York, 1995), p. 389.Google Scholar
34.Sinkler, W. and Luzzi, D. E., in Kinetics of Phase Transformations, edited by Thompson, M. O., Aziz, M. J., and Stephenson, G. B. (Mater. Res. Soc. Symp. Proc. 205, Pittsburgh, PA, 1992), p. 209; W. Sinkler, Acta Metall. 44, 1623 (1996).Google Scholar
35.Narayanan, G. H. and Archbold, T. F., Electron Microscopy and Structure of Materials, Proc. Fifth Int. Mater. Symp., Berkeley, CA (1971).Google Scholar
36.Dwight, A. E., Trans. ASM 53, 479 (1961).Google Scholar