Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T19:11:46.553Z Has data issue: false hasContentIssue false

Microwave-hydrothermal processing of metal powders

Published online by Cambridge University Press:  03 March 2011

Sridhar Komarneni*
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Rajyalakshmi Pidugu
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Qing Hua Li
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Rustum Roy
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
*
a)Also with the Department of Agronomy.
Get access

Abstract

Novel microwave-hydrothermal processing has been developed by us recently for the synthesis of a wide variety of ceramic powders. Herein, we report the use of microwave-hydrothermal processing to synthesize several metal powders such as Cu, Ni, Co, and Ag by reducing their corresponding metal salts or hydroxides with ethylene glycol. Metal powders have been produced extremely rapidly a (few minutes) by microwave catalysis. The kinetics of metal powder synthesis have been increased by at least an order of magnitude by microwave-hydrothermal processing compared to the conventional refluxing process in ethylene glycol at about 195 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tani, E., Yoshimura, M., and Sõmiya, S., J. Am. Ceram. Soc. 64, C-181 (1981).CrossRefGoogle Scholar
2Komarneni, S., Roy, R., Breval, E., Ollinen, M., and Suwa, Y., Adv. Ceram. Mater. 1, 87 (1986).Google Scholar
3Komarneni, S., Fregeau, E., Breval, E., and Roy, R., J. Am. Ceram. Soc. Commun. 71, C-26 (1988).Google Scholar
4Komarneni, S., Int. J. High Tech. Ceram. 4, 31 (1988).CrossRefGoogle Scholar
5Kutty, T.R. N. and Balachandran, R., Mater. Res. Bull. 19, 1479 (1984).CrossRefGoogle Scholar
6Stambaugh, E. P., Mater. Design 10, 175 (1989).CrossRefGoogle Scholar
7Laudise, R. A., in Progress in Inorganic Chemistry, edited by Cotton, F. A. (American Chemical Society, Washington, DC, 1962), Vol. 3, p. 1.CrossRefGoogle Scholar
8Kalousek, G. L., J. Am. Concrete Inst. 26, 233 (1954).Google Scholar
9Komarneni, S. and Breval, E., Clay Minerals 20, 181 (1985).CrossRefGoogle Scholar
10Barrer, R. M., Hydrothermal Chemistry of Zeolites (Academic Press, London, 1982), p. 360.Google Scholar
11Yoshimura, M. and Sõmiya, S., J. Am. Ceram. Soc. 59, 256 (1980).Google Scholar
12Gogotsi, Yu G. and Yoshimura, M., Nature (London) 367, 628 (1994).CrossRefGoogle Scholar
13Yamasaki, Y., Yasui, T., and Matsuoka, K., Environ. Sci. Technol. 14, 550 (1980).CrossRefGoogle Scholar
14Hawkins, D. and Roy, R., J. Am. Ceram. Soc. 45, 507 (1962).CrossRefGoogle Scholar
15Yoshimura, M., Yoo, S-E., Hayashi, M., and Ishizawa, N., Jpn. J. Appl. Phys. 28, L2007 (1989).CrossRefGoogle Scholar
16Kajiyoshi, K., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 74, 369 (1991).CrossRefGoogle Scholar
17Komarneni, S., Roy, R., and Li, Q. H., Mater. Res. Bull. 27, 1393 (1992).CrossRefGoogle Scholar
18Komarneni, S., Li, Q., Stefansson, K. M., and Roy, R., J. Mater. Res. 8, 3176 (1993).CrossRefGoogle Scholar
19Komarneni, S., Proc. Int. Forum for Materials Engineers at Sanjo-Tsubame on Porous Materials, in Ceramic Tramnsactions, edited by Ishizaki, K.et al. (American Ceramics Society, Westerville, OH, 1993), Vol. 31, pp. 155168.Google Scholar
20Komarneni, S. and Li, Q. H., J. Mater. Chem. 4, 1903 (1994).CrossRefGoogle Scholar
21Komarneni, S., in Proc. Int. Symp. on Novel Techniques in Synthesis and Processing of Advanced Materials (AMS, 1995, in press).Google Scholar
22Komarneni, S., in Proc. Int. Symp. on Environmental Issues of Ceramics (Japan Ceramics Society, 1995, in press).Google Scholar
23Figlarz, M., Fievet, F., and Lagier, J. P., in Powder Preparation/Rapid Quenching, edited by Akashi, K., Ozaki, Y., Takeda, T., Inoue, A., Masumoto, T., and Suzuki, T. (Mater. Res. Soc. Symp. Proc. 3, Pittsburgh, PA, 1989), p. 125.Google Scholar
24Tekaia-Ehlsissen, K., Delahaye-Vidal, A., Nowogrocki, G., and Figlarz, M., Solid State Ionics 32/33, 198 (1989).Google Scholar
25Fievert, F., Lagier, J. P., and Figlarz, M., MRS Bull. XIV, 29 (1989).CrossRefGoogle Scholar
26Ferrier, G. G., Berzins, A. R., and Davey, N. M., Platinum Metals Rev. 29, 175 (1985).CrossRefGoogle Scholar
27Demopoulos, G. P. and Pouskouleli, G., J. Metals 40, 46 (1988).Google Scholar
28Zeniya, Y., in Precious Metals 1986, edited by Rao, U. V. (PIMI, Allentown, PA, 1986), p. 409.Google Scholar
29Fischer, L. B., Anal. Chem. 58, 261 (1986).CrossRefGoogle Scholar
30Kingston, H. M. and Jessie, L. B., Anal. Chem. 58, 2534 (1986).CrossRefGoogle Scholar
31Papp, C. S. E. and Fischer, L. B., Analyst 112, 337 (1987).CrossRefGoogle Scholar
32Weast, R. C., in C. R. C. Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 19931994).Google Scholar
33Komarneni, S. and Roy, R., Mater. Lett. 4, 107 (1986).CrossRefGoogle Scholar