Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T07:00:43.220Z Has data issue: false hasContentIssue false

Model for zinc oxide varistor

Published online by Cambridge University Press:  31 January 2011

J. D. Santos
Affiliation:
Departamento de Química Universidade Federal de São Carlos, C.P. 676, 13565-905, São Carlos, SP, Brazil
E. Longo
Affiliation:
Departamento de Química Universidade Federal de São Carlos, C.P. 676, 13565-905, São Carlos, SP, Brazil
E. R. Leite
Affiliation:
Departamento de Química Universidade Federal de São Carlos, C.P. 676, 13565-905, São Carlos, SP, Brazil
J. A. Varela
Affiliation:
Universidade Estadual Paulista, Instituto de Química, C.P. 355, 14800-900, Araraquara, SP, Brazil
Get access

Abstract

Zinc oxide varistors are very complex systems, and the dominant mechanism of voltage barrier formation in these systems has not been well established. Yet the MNDO quantum mechanical theoretical calculation was used in this work to determine the most probable defect type at the surface of a ZnO cluster. The proposed model represents well the semiconducting nature as well as the defects at the ZnO bulk and surface. The model also shows that the main adsorption species that provide stability at the ZnO surface are O-, O2-, and O2.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pike, G. E. and Seager, C. H., J. Appl. Phys. 50, 3414 (1979).CrossRefGoogle Scholar
2.Matsuoka, M., Jpn. J. Appl. Phys. 10, 73 (1971).CrossRefGoogle Scholar
3.Kingery, W. D. and Bowen, H. K., Introduction of Ceramics, 2nd ed. (John Wiley & Sons, New York, 1975).Google Scholar
4.Mahan, G. D., J. Appl. Phys. 54, 3825 (1983).CrossRefGoogle Scholar
5.Schwing, V. and Hoffmann, B., J. Appl. Phys. 57, 5372 (1985).CrossRefGoogle Scholar
6.Sato, K. and Takada, Y., Advances in Ceramics, edited by F. M. Yan and H. H. Heuer (1983), Vol. 7, p. 22.Google Scholar
7.Gupta, T. K. and Carlson, W. G., J. Mater. Sci. 20, 3487 (1985).CrossRefGoogle Scholar
8.Sato, K. and Takada, Y., J. Appl. Phys. 53, 8819 (1982).CrossRefGoogle Scholar
9.Gupta, T. K. and Carlson, W. G., J. Appl. Phys. 52, 4104 (1981).CrossRefGoogle Scholar
10.Gupta, T. K. and Carlson, W. G., Advances in Ceramics, edited by F. M. Yan and H. H. Heuer (1983), p. 30.Google Scholar
11.Gupta, T. K. and Carlson, W. G., J. Appl. Phys. 53, 7401 (1982).CrossRefGoogle Scholar
12.Dewar, M. J. S. and Thiel, W. J., Am. Ceram. Soc. 9, 4899 (1977).Google Scholar
13.Stewart, J. J. P., Quantum Chem. Prog. Exch. Bull., 343 (1983).Google Scholar
14.Dewar, M. J. S. and Merz, K. M. Jr., Organometallics 5, 1494 (1986).CrossRefGoogle Scholar
15.Dewar, M. J. S. and Merz, K. M. Jr., Organometallics 7, 552 (1988).Google Scholar
16.Stewart, J. J. P., J. Comp. Chem. 12, 320 (1991).CrossRefGoogle Scholar
17.Oshiro, T., Lutrus, C. K., Hagen, D. E., Beck, S., and Salk, S. H. S., Solid State Commun. 87, 801 (1993).CrossRefGoogle Scholar
18.Martins, J. B. L., Longo, E., and Andres, J., Int. J. Quantum Chem. 27, 643 (1993).CrossRefGoogle Scholar
19.Martins, J. B. L., Andres, J., Longo, E., and Taft, C. A., Int. J. Quantum Chem. (1995) (in press).Google Scholar
20.Fujitsu, S., Koumoto, K., and Yanagida, H., Solid State Ionics 32/33, 482 (1989).CrossRefGoogle Scholar
21.Binesti, D., Ph.D. Thesis, University of Bordeaux I, France (1985).Google Scholar
22.Takahashi, K., Miyoshi, U., Maeda, K., and Namazaki, O., Grain Boundaries in Semiconductors (Elsevier, New York, 1982), p. 39.Google Scholar
23.Leite, E. R., Varela, J. A., and Longo, E., J. Mater. Sci. 27, 5325 (1992).CrossRefGoogle Scholar
24.Shih-Chi-Chang, , J. Vac. Sci. Technol. 17, 242 (1980).Google Scholar
25.Eda, K., J. Appl. Phys. 49, 2964 (1978).CrossRefGoogle Scholar
26.Gupta, T. K. and Carlson, W. G., J. Appl. Phys. 53, 7401 (1982).CrossRefGoogle Scholar
27.Kuwabara, R., Adachi, H., and Morimoto, T., Surf. Sci. 193, 271 (1988).CrossRefGoogle Scholar
28.Sekine, R., Adachi, H., and Morimoto, T., Surf. Sci. 208, 177 (1989).CrossRefGoogle Scholar
29.Baetzold, R. C., J. Phys. Chem. 89, 4150 (1985).CrossRefGoogle Scholar
30.Rodriguez, J. A. and Campbell, C. T., Langmuir 4, 1006 (1988); J. A. Rodriguez and C. T. Campbell, J. Phys. Chem. 91, 6648 (1987).CrossRefGoogle Scholar
31.Ley, L., Pollack, R. A., McFeely, F. R., Kowalczk, S. P., and Shirley, D. A., Phys. Rev. B 9, 600 (1974).CrossRefGoogle Scholar