Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T14:22:59.388Z Has data issue: false hasContentIssue false

Modeling of crack tip dislocation emission in B2 intermetallic alloys

Published online by Cambridge University Press:  31 January 2011

Michael F. Bartholomeusz
Affiliation:
Department of Materials Science, University of Virginia, Charlottesville, Virginia 22901
John A. Wert
Affiliation:
Department of Materials Science, University of Virginia, Charlottesville, Virginia 22901
Get access

Abstract

A model has been previously proposed to describe the energy associated with emission of dissociated superlattice dislocations from crack tips in ordered intermetallic alloys. In the present paper, the model is applied to several B2 intermetallic alloys. The results of the analysis reveal a correlation between the range of slip system orientations for which emission of a dislocation from a crack tip is energetically favorable and the macroscopic fracture mode of the alloy. Additionally, the effects of changing the active slip system, increasing the thermal energy available for thermally activated dislocation emission, and changing the {111} APB energy on the fracture mode of NiAl and FeAl are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stoloff, N. S., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C.C., Liu, C.T., and Stoloff, N.S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 343.Google Scholar
2.Wert, J.A., “Ordered Intermetallic Alloys for Elevated Temperature Aerospace Applications”, (1990), submitted to Monograph on Flight-Vehicle Materials, Structures and Dynamics Technologies– Assessment and Future Directions.Google Scholar
3.Baker, I. and Munroe, P. R., in High Temperature Aluminides & Intermetallics, edited by Whang, S.H., Liu, C.T., Pope, D.P., and Stiegler, J. O. (The Minerals, Metals & Materials Society, Warrendale, PA, 1990), p. 425.Google Scholar
4.Liu, C.T. and George, E. P., Scripta Metall. 24, 1285 (1990).CrossRefGoogle Scholar
5.Miracle, D. B., Russell, S., and Law, C. C., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 225.Google Scholar
6.Hahn, K. H. and Vedula, K., Scripta Metall. 17, 7 (1989).CrossRefGoogle Scholar
7.Rice, J. R. and Thomson, R., Philos. Mag. 29, 73 (1974).Google Scholar
8.Turner, C. D., Powers, W. O., and Wert, J. A., Acta Metall. 37, 2635 (1989).CrossRefGoogle Scholar
9.George, E. P., Horton, J. A., Porter, W. D., and Schneibel, J. H., J. Mater. Res. 5, 1639 (1990).CrossRefGoogle Scholar
10.Bartholomeusz, M. F. and Wert, J. A., “Effect of Dislocation Dissociation on Crack Tip Plasticity in L12 Intermetallic Alloys”, accepted for publication in Acta Metall. et Mater.Google Scholar
11.Hecker, S. S., Rohr, D. C., and Stein, D. F., Metall. Trans. 9A, 481 (1978).Google Scholar
12.Lardner, R. W., Mathematical Expositions (University of Toronto Press, Toronto, ON, 1974), p. 281.Google Scholar
13.Wang, J. S., Anderson, P. M., and Rice, J. R., in Mechanical Behavior of Materials V, edited by Yan, M. G., Zhang, S. H., and Zheng, Z. M. (Pergamon Press, Oxford, 1987), p. 191.Google Scholar
14.Potter, D. I., Mater. Sci. Eng. 5, 201 (1969).CrossRefGoogle Scholar
15.Lautenschlager, E. P., Hughes, T., and Brittain, J. O., Acta Metall. 15, 1347 (1967).CrossRefGoogle Scholar
16.Crawford, R. C. and Ray, I. L. F., Philos. Mag. 35, 549 (1977).CrossRefGoogle Scholar
17.Saka, H., Kawase, M., Nohara, A., and Imura, T., Philos. Mag. 50, 65 (1984).CrossRefGoogle Scholar
18.Yamaguchi, M., Pope, D. P., Vitek, V., and Umakoshi, Y., Philos. Mag. 43, 1265 (1981).CrossRefGoogle Scholar
19.Turley, J. and Sines, G., J. Phys. D: Appl. Phys. 4, 264 (1971).CrossRefGoogle Scholar
20.Grimvall, G., Thermophysical Properties of Materials (North-Holland, Amsterdam, 1986), p. 30.Google Scholar
21.Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (The M.I.T. Press, Cambridge, MA, 1971).Google Scholar
22.Reynolds, C. L., Couchmand, P. R., and Karasz, F. E., Philos. Mag. 34, 659 (1976).Google Scholar
23.Murr, L. E., Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975), p. 122.Google Scholar
24.Darolia, R., Lahrman, D. F., Field, R. D., and Freeman, A. J., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C.T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 113.Google Scholar
25.Vedula, K. and Stephens, J. R., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 381.Google Scholar
26.Vedula, K., Hahn, K. H., and Boulogne, B., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T.Taub, A. I., Stoloff, S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 299.Google Scholar
27.Darolia, R., JOM 43 (3), 44 (1991).CrossRefGoogle Scholar
28.Mendiratta, M. G., Ehlers, S. K., Dimiduk, D. M., Kerr, W. R., Mazdiyasni, S., and Lipsitt, H. A., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 393.Google Scholar
29.Fu, C. L. and Yoo, M. H., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 667.Google Scholar
30.Chang, K. M. and Rosa, R.A., Cleavage Behavior of Intermetallic Fe-40Al Single Crystals (General Electric Technical Report Class 1, 1990).Google Scholar
31.Liu, C.T., McKaney, C.G., and Lee, E. H., Scripta Metall. 24, 385 (1990).CrossRefGoogle Scholar
32.Kerr, W. R., Metall. Trans. 17A, 2298 (1986).CrossRefGoogle Scholar
33.McKaney, C. G. and Horton, J. A., Metall. Trans. 20A, 751 (1989).CrossRefGoogle Scholar
34.Liu, C. T. and George, E. P., in High-Temperature Ordered Intermetallic Alloys TV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 527.Google Scholar
35.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).Google Scholar
36.Mendiratta, M. G., Kim, H. K., and Lipsitt, H. A., Metall. Trans. 15A, 395 (1984).CrossRefGoogle Scholar
37.Verlinden, B. and Delaey, L., Acta Metall. 36, 1771 (1988).CrossRefGoogle Scholar
38.Moffatt, W. G., The Handbook of Binary Phase Diagrams (Genium Publishing Co., Schenectady, NY, 1987).Google Scholar
39.Murakami, K., Umakoshi, Y., and Yamaguchi, M., Philos. Mag. 37, 719 (1978).CrossRefGoogle Scholar
40.Murakami, Y. and Kachi, S., J. Phys. Soc. Jpn. 37, 1475 (1974).CrossRefGoogle Scholar
41.Krishnan, R. V. and Brown, L. C., Phys. Status Solidi 12, k35 (1972).CrossRefGoogle Scholar
42.Harmouche, M. R. and Wolfenden, A., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 343.Google Scholar
43.Zirinsky, S., Acta Metall. 4, 164 (1956).CrossRefGoogle Scholar
44.Yasuda, H., Takasugi, T., and Koiwa, M., Met. Trans. J.I.M. 32, 48 (1991).Google Scholar
45.Takasugi, T., Yoshida, M., and Kawabata, T., "The Effect of Temperature and Orientation on Dislocation Microstructures in B2-Type CoTi Single Crystals," Philos. Mag. (in press).Google Scholar
46.Wasiewski, R. J., Trans. A.I.M.E. 236, 455 (1966).Google Scholar
47.Schiltz, R. J., Prevender, T. S., and Smith, J. F., J. Appl. Phys. 42, 4680 (1971).CrossRefGoogle Scholar
48.Schulson, E. M. and Teghtsoonian, E., Philos. Mag. 37, 155 (1969).CrossRefGoogle Scholar
49.Shea, M. M. and Stoloff, N. S., Metall. Trans. 5, 755 (1974).CrossRefGoogle Scholar
50.Mitchell, J. B., Abo-El-Fotah, O., and Dorn, J. E., Metall. Trans. 2, 3265 (1971).CrossRefGoogle Scholar
51.Dwight, E. A., Trans. A.I.M.E. 215, 283 (1959).Google Scholar
52.Takasugi, T., Izumi, O., and Yoshida, M., J. Mater. Sci. 26, 2941 (1991).Google Scholar