Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T21:47:15.052Z Has data issue: false hasContentIssue false

Modeling of the effects of crystallographic orientation on electromigration-limited reliability of interconnects with bamboo grain structures

Published online by Cambridge University Press:  31 January 2011

W. R. Fayad
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
V. K. Andleigh
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
C. V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Get access

Abstract

We presented a model for the line-width-dependent grain structure statistics in bamboo interconnects. We then showed, using an electromigration simulation, that grain orientation-dependent interface diffusivities constitute a likely mechanism contributing to the variabilities in lifetimes observed in experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vaidya, S., Sheng, T.T., and Sinha, A.K., Appl. Phys. Lett. 36, 464 (1980).CrossRefGoogle Scholar
2.Kinsborn, E., Appl. Phys. Lett. 36, 968 (1980).CrossRefGoogle Scholar
3.Kwok, T. and Ho, P.S., Diffusion Phenomena in Thin Films (Noyes Publication, Park Ridge, NJ, 1988), p. 369.Google Scholar
4.Cho, J. and Thompson, C.V., Appl. Phys. Lett. 54, 2577 (1989).CrossRefGoogle Scholar
5.Thompson, C.V. and Kahn, H., J. of Electronic Materials 22, 581 (1993).CrossRefGoogle Scholar
6.Kang, S.H., Kim, C., Morris, J.W. Jr., and Genin, F.Y., J. Appl. Phys. 79, 8330 (1996).CrossRefGoogle Scholar
7.Knowlton, B.D., Clement, J.J., Frank, R.I., and Thompson, C.V., in Materials Reliability in Microelectronics V, edited by Oates, A.S., Filter, W.F., Rosenberg, R., Greer, A.L., and Gadepally, K. (Mater. Res. Soc. Symp. Proc. 391, Pittsburgh, PA, 1995), pp. 189196.Google Scholar
8.Knowlton, B.D., Clement, J.J., and Thompson, C.V., J. Appl. Phys. 81, 6073 (1997).CrossRefGoogle Scholar
9.Theiss, S.K., Prybyla, J.A., and Marcus, M.A., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E. Jr., and Suo, Z. (Meter. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), pp. 387392.Google Scholar
10.Hu, C.-K. and Luther, B., Mater. Chem. Phys. 41, 1 (1995).CrossRefGoogle Scholar
11.Hu, C.K., Lee, K.Y., Gignac, L., and Carruthers, R., Thin Solid Films 308–309, 443 (1997).CrossRefGoogle Scholar
12.Read, W.T. Jr, and Shockley, W., in Dislocations in Metals, edited by Koehler, J.S., Seitz, F., Read, W.T. Jr., and Orawan, E., (Institute of Metals, Institute of Metals Division, American Institute of Mining and Metallurgical Engineers, NY, 1954), Chap. 2, p. 37.Google Scholar
13.Park, Y-J., Andleigh, V.K., and Thompson, C.V., J. Appl. Phys. 85, 3546 (1999).CrossRefGoogle Scholar
14.Choi, J.Y. and Shewmon, P.G., Trans. AIME 224, 589 (1962).Google Scholar
15.Frost, H.J., Thompson, C.V., Howe, C.L., and J. Whang, Scripta Met. 22, 65 (1988).CrossRefGoogle Scholar
16.Fayad, W., Frost, H.J., and Thompson, C.V., Scripta Mat. 40, 1199 (1999).CrossRefGoogle Scholar
17.Walton, D.T., Frost, H.J., and Thompson, C.V., Appl. Phys. Lett. 61, 40 (1992).CrossRefGoogle Scholar
18.Fayad, W.R., Kobrinsky, M.J., and Thompson, C.V., Phys. Rev. B 62, 5221 (2000).CrossRefGoogle Scholar
19.Besser, P.R., Sanchez, J.E., Field, D.P., Pramanick, S., and Sahota, K., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E. Jr, and Suo, Z. (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), pp. 217222.Google Scholar
20.Hau-Riege, C.S. and Thompson, C.V., Appl. Phys. Let. 75, 1464 (1999).CrossRefGoogle Scholar
21.Carel, R., Thompson, C.V., and Frost, H.J., Acta Mat. 44, 2479 (1996).CrossRefGoogle Scholar
22.Frost, H.J., Thompson, C.V., Walton, D.T., Acta Metallurgicaet Materiala 38, 1455 (1990).CrossRefGoogle Scholar
23.Korhonen, M.A., Borgesen, P., Tu, K.N., and Li, C-Y., J. Appl. Phys. 73, 3790 (1993).CrossRefGoogle Scholar
24.Harper, J.M.E. and Rodbell, K.P., J. Vac. Sci. and Tech. B 15, 763 (1997).CrossRefGoogle Scholar
25.Chu, X., Prybyla, J.A., Theiss, S.K., and Marcus, M.A., Appl. Phys. Letts. 75, 3790 (1999).CrossRefGoogle Scholar
26.Thouless, M.D., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E. Jr, and Suo, Z. (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), pp. 305315.Google Scholar