Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T17:18:42.417Z Has data issue: false hasContentIssue false

Modified carbon nanotubes for water-based cathode slurries for lithium–sulfur batteries

Published online by Cambridge University Press:  08 February 2019

Olesya O. Kapitanova*
Affiliation:
Moscow State University, Moscow 119991, Russia
Kirill V. Mironovich
Affiliation:
Moscow State University, Moscow 119991, Russia
Daniil E. Melezhenko
Affiliation:
Moscow State University, Moscow 119991, Russia
Viktoria V. Rokosovina
Affiliation:
Moscow State University, Moscow 119991, Russia
Serafima Y. Ryzhenkova
Affiliation:
Moscow State University, Moscow 119991, Russia
Sergey V. Korneev
Affiliation:
Moscow State University, Moscow 119991, Russia
Tatyana B. Shatalova
Affiliation:
Moscow State University, Moscow 119991, Russia
Xieyu Xu
Affiliation:
Moscow State University, Moscow 119991, Russia
Filipp S. Napolskiy
Affiliation:
Dubna University, Dubna 141980, Russia
Daniil M. Itkis
Affiliation:
Moscow State University, Moscow 119991, Russia; and Dubna University, Dubna 141980, Russia
Victor A. Krivchenko
Affiliation:
Moscow State University, Moscow 119991, Russia; and Institute of Arctic Technology of MIPT, Dolgoprudny, Moscow Region 141701, Russia
*
a)Address all correspondence to this author. e-mail: olesya.kapitanova@gmail.com
Get access

Abstract

In this study, for the first time, chemically modified carbon nanotubes (CNTs) were used as a conductive additive in the cathode composite for lithium–sulfur batteries. Oxidation of pure CNTs has been carried out using modified Hummers’ method, and to partially remove oxygen groups from the CNT surface and increase their electronic conductivity, oxidized CNTs have been hydrothermally treated. The cathode slurry was mixed in water with a water-soluble LA133 binder. Despite the decrease in electronic conductivity of CNTs after chemical treatment, the presence of structural defects and oxygen groups provides uniform distribution of modified CNTs in the sulfur-based composite, which results in more than twice higher electrode specific capacity compared with the electrodes comprising pure CNTs. Using chemically modified CNTs as a conductive additive is proposed as an effective way for the preparation of nontoxic and cost-effective water-based cathode slurries in lithium–sulfur batteries.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pang, Q., Liang, X., Kwok, C.Y., and Nazar, L.F.: Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 1 (2016).CrossRefGoogle Scholar
Ji, X.L. and Nazar, L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 9821 (2010).CrossRefGoogle Scholar
Nole, D.A. and Moss, V.: Battery employing lithium–sulphur electrodes with non-aqueous electrolyte. U.S. Patent No. 3532543, 1 (1968).Google Scholar
Song, M.K., Cairns, E.J., and Zhang, Y.: Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities. Nanoscale 5, 2186 (2013).CrossRefGoogle ScholarPubMed
Rauh, R.D., Shuker, F.S., Marston, J.M., and Brummer, S.B.: Formation of lithium polysulfides in aprotic media. J. Inorg. Nucl. Chem. 39, 1761 (1977).CrossRefGoogle Scholar
Mikhaylik, Y.V. and Akridge, J.R.: Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969 (2004).CrossRefGoogle Scholar
Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y., and Peled, E.: Lithium sulfur battery—Oxidation reduction-mechanisms of polysulfides in THF solutions. J. Electrochem. Soc. 135, 1045 (1988).CrossRefGoogle Scholar
Pang, Q., Kundu, D., Cuisinier, M., and Nazar, L.F.: Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat. Commun. 5, 1 (2014).CrossRefGoogle ScholarPubMed
Zhou, J.W., Li, R., Fan, X.X., Chen, Y.F., Han, R.D., Li, W., Zheng, J., Wang, B., and Li, X.G.: Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy Environ. Sci. 7, 2715 (2014).CrossRefGoogle Scholar
Zhao, Z.X., Wang, S., Liang, R., Li, Z., Shi, Z.C., and Chen, G.H.: Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. J. Mater. Chem. A 2, 13509 (2014).CrossRefGoogle Scholar
Wang, Z.Q., Wang, B.X., Yang, Y., Cui, Y.J., Wang, Z.Y., Chen, B.L., and Qian, G.D.: Mixed-metal-organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 7, 20999 (2015).CrossRefGoogle ScholarPubMed
Liang, X., Hart, C., Pang, Q., Garsuch, A., Weiss, T., and Nazar, L.F.: A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).CrossRefGoogle ScholarPubMed
Gerber, L.C.H., Frischmann, P.D., Fan, F.Y., Doris, S.E., Qu, X., Scheuermann, A.M., Persson, K., Chiang, Y.M., and Helms, B.A.: Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator. Nano Lett. 16, 549 (2016).CrossRefGoogle ScholarPubMed
Meini, S., Elazari, R., Rosenman, A., Garsuch, A., and Aurbach, D.: The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems. J. Phys. Chem. Lett. 5, 915 (2014).CrossRefGoogle ScholarPubMed
Peng, H.J., Huang, J.Q., Cheng, X.B., and Zhang, Q.: Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1 (2017).Google Scholar
Zhou, G.M., Yin, L.C., Wang, D.W., Li, L., Pei, S.F., Gentle, I.R., Li, F., and Cheng, H.M.: Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7, 5367 (2013).CrossRefGoogle ScholarPubMed
Chen, H.W., Wang, C.H., Dai, Y.F., Qiu, S.Q., Yang, J.L., Lu, W., and Chen, L.W.: Rational design of cathode structure for high rate performance lithium–sulfur batteries. Nano Lett. 15, 5443 (2015).CrossRefGoogle ScholarPubMed
Zeng, L.C., Pan, F.S., Li, W.H., Jiang, Y., Zhong, X.W., and Yu, Y.: Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode. Nanoscale 6, 9579 (2014).CrossRefGoogle ScholarPubMed
Kang, W.M., Deng, N.P., Ju, J.G., Li, Q.X., Wu, D.Y., Ma, X.M., Li, L., Naebe, M., and Cheng, B.W.: A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale 8, 16541 (2016).CrossRefGoogle ScholarPubMed
Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., and Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872 (2009).CrossRefGoogle ScholarPubMed
Ji, L.W., Rao, M.M., Zheng, H.M., Zhang, L., Li, Y.C., Duan, W.H., Guo, J.H., Cairns, E.J., and Zhang, Y.G.: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522 (2011).CrossRefGoogle ScholarPubMed
Zhang, L., Ji, L.W., Glans, P.A., Zhang, Y.G., Zhu, J.F., and Guo, J.H.: Electronic structure and chemical bonding of a graphene oxide–sulfur nanocomposite for use in superior performance lithium–sulfur cells. Phys. Chem. Chem. Phys. 14, 13670 (2012).CrossRefGoogle ScholarPubMed
Rong, J.P., Ge, M.Y., Fang, X., and Zhou, C.W.: Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium–sulfur (Li–S) batteries. Nano Lett. 14, 473 (2014).CrossRefGoogle ScholarPubMed
He, G., Hart, C.J., Liang, X., Garsuch, A., and Nazar, L.F.: Stable cycling of a scalable graphene–encapsulated nanocomposite for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 6, 10917 (2014).CrossRefGoogle ScholarPubMed
He, M., Yuan, L-X., Zhang, W-X., Hu, X-L., and Huang, Y-H.: Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J. Phys. Chem. C 115, 15703 (2011).CrossRefGoogle Scholar
Zhang, Z., Bao, W., Lu, H., Jia, M., Xie, K., Lai, Y., and Li, J.: Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium–sulfur battery. ECS Electrochem. Lett. 1, 34 (2012).CrossRefGoogle Scholar
Song, M-K., Zhang, Y., and Cairns, E.J.: A long-life, high-rate lithium/sulfur cell: A multifaceted approach to enhancing cell performance. Nano Lett. 13, 58915899 (2013).CrossRefGoogle ScholarPubMed
Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., and Dékány, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740 (2006).CrossRefGoogle Scholar
Pretsch, E., Bühlmann, P., and Badertscher, M.: Structure Determination of Organic Compounds. Tables of Spectral Data (Springer, Berlin, Heidelberg, Germany, 2009); pp. 245312.Google Scholar
Li, D., Muller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008).CrossRefGoogle ScholarPubMed
Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47 (2005).CrossRefGoogle Scholar
Kolosnitsyn, V.S., Karaseva, E.V., Kuzmina, E.V., and Ivanov, A.L.: Why the amount of electrolyte affects the characteristics of lithium–sulfur cells. Elektrokhimiya 52, 315 (2016).Google Scholar
Wang, H.L., Yang, Y., Liang, Y.Y., Robinson, J.T., Li, Y.G., Jackson, A., Cui, Y., and Dai, H.J.: Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644 (2011).CrossRefGoogle ScholarPubMed
Harimaa, Y., Setodoia, S., Imaea, I., Komaguchia, K., Ooyamaa, Y., Ohshitaa, J., Mizotab, H., and Yano, J.: Electrochemical reduction of graphene oxide in organic solvents. Electrochim. Acta 56, 5363 (2011).CrossRefGoogle Scholar
Kauppilaa, J., Kunnasa, P., Damlina, P., Viinikanojaa, A., and Kvarnström, C.: Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochim. Acta 89, 84 (2013).CrossRefGoogle Scholar
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010).CrossRefGoogle ScholarPubMed
Kolosnitsyn, V.S., Kuzmina, E.V., and Karaseva, E.V.: On the reasons for low sulphur utilization in the lithium–sulphur batteries. J. Power Sources 274, 203 (2015).CrossRefGoogle Scholar
Supplementary material: File

Kapitanova et al. supplementary material

Figures S1-S5

Download Kapitanova et al. supplementary material(File)
File 22.3 MB