Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T17:46:22.505Z Has data issue: false hasContentIssue false

Molecular beam homoepitaxial growth of MgO(001)

Published online by Cambridge University Press:  03 March 2011

S.A. Chambers
Affiliation:
Molecular Science Research Center, Pacific Northwest Laboratory, Richland, Washington 99352
T.T. Tran
Affiliation:
Molecular Science Research Center, Pacific Northwest Laboratory, Richland, Washington 99352
T.A. Hileman
Affiliation:
Molecular Science Research Center, Pacific Northwest Laboratory, Richland, Washington 99352
Get access

Abstract

We describe homoepitaxial growth and detailed in situ characterization of MgO(001). We have used, for the first time, high-speed Auger electron spectroscopy as a real-time probe of film composition during growth. Excellent short-range and long-range crystallographic order are achieved in films grown to a thickness of several hundred angstroms in the substrate temperature range of 450 °C to 750 °C. Moreover, the films become more laminar as the growth temperature increases, suggesting that MgO grows homoepitaxially by the step-flow growth mechanism at elevated temperature. The surfaces of films grown at 650°and 750 °C are smoother than those obtained by cleaving MgO(001).

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bando, Y., Horii, S., and Takada, T., Jpn. J. Appl. Phys. 17, 1037 (1978).CrossRefGoogle Scholar
2Shigematsu, T., Ushigome, H., Bando, T., and Takada, T., J. Cryst.Growth 50, 801 (1980).CrossRefGoogle Scholar
3Terashima, T. and Bando, Y., J. Appl. Phys. 56, 3445 (1984).CrossRefGoogle Scholar
4Terashima, T. and Bando, Y., Thin Solid Films 152, 455 (1987).CrossRefGoogle Scholar
5Gao, Y., Merkle, K. L., Chang, H. L. M., Zhang, T. J., and Lam, D. J., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R. F. C., Harbison, J. P., Peercy, P. S., and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 59.Google Scholar
6Gao, Y., Bai, G., Merkle, K. L., Shi, Y., Chang, H. L. M., Shen, Z., and Lam, D. J., J. Mater. Res. 8, 145 (1993).CrossRefGoogle Scholar
7You, H., Chang, H. L. M., Chiarello, R. P., and Lam, D. J., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R. F. C., Harbison, J. P., Peercy, P. S., and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 181.Google Scholar
8Yamamoto, M., Fukumoto, H., and Osaka, Y., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R. F. C., Harbison, J. P., Peercy, P. S., and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 35.Google Scholar
9Booth, J. R., Kingery, W. D., and Bowen, H. K., J. Cryst. Growth 29, 257 (1975).CrossRefGoogle Scholar
10Yadavalli, S., Yang, M. H., and Flynn, C. P., Phys. Rev. B 41, 7961 (1990).CrossRefGoogle Scholar
11Rung, H. H., Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier Publishers, New York, 1989).Google Scholar
12Duriez, C., Chapon, C., Henry, C. R., and Rickard, J. M., Surf. Sci. 230, 123 (1990).CrossRefGoogle Scholar
13Zhou, J. B., Lu, H. C., Gustafsson, T., and Haberle, P., Surf. Sci. 302, 350 (1994).CrossRefGoogle Scholar
14Kim, S. S., Baik, S., Kim, H. W., and Kim, C. Y., Surf. Sci. Lett. 294, L935 (1993).Google Scholar
15Varma, S., Chen, X., Davoli, I., Zhang, J., Saldin, D. K., and Tonner, B. P., Surf. Sci. 314, 145 (1994).CrossRefGoogle Scholar
16Henrich, V. E. and Cox, P. A., Appl. Surf. Sci. 72, 277 (1993).CrossRefGoogle Scholar
17Henrich, V. E., and Cox, P. A., The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994).Google Scholar
18M-C. Wu, Corneille, J. S., Estrada, C. A., He, J-W., and Goodman, D.W., Chem. Phys. Lett. 182, 472 (1991).Google Scholar
19Chambers, S. A., Vitomirov, I. M., Anderson, S. B., Chen, H. W., Wagener, T. J., and Weaver, J. H., Superlattices and Microstructures 3, 563 (1987).CrossRefGoogle Scholar
20Egellhoff, W. F. Jr., Crit. Rev. Solid State and Mater. Sci. 16, 213 (1990).CrossRefGoogle Scholar
21Chambers, S. A., Adv. Phys. 40, 357 (1991).CrossRefGoogle Scholar
22For detailed discussions of XPD and AED in MgO(00l), see Ref. 15, plus Chambers, S.A. and Tran, T.T., Surf. Sci. Lett. 314, L867 (1994); Tran, T.T. and Chambers, S.A., Appl. Surf. Sci. (1994).CrossRefGoogle Scholar
23McCune, R.C. and Wynblatt, P., J. Am. Ceram. Soc. 66, 111 (1983).CrossRefGoogle Scholar
24Friedman, D. J. and Fadley, C. S., J. Electr. Spectros. Rel. Phenom. 51, 689 (1990).CrossRefGoogle Scholar
25For an excellent and detailed discussion of growth modes in MBE, see Tsao, J. Y., Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, San Diego, CA, 1993).Google Scholar