Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:22:31.395Z Has data issue: false hasContentIssue false

Molecular dynamics simulations of grain boundary diffusion in Al using embedded atom method potentials

Published online by Cambridge University Press:  03 March 2011

Chun-Li Liu
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
S.J. Plimpton
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

Molecular dynamics (MD) simulations of diffusion in a Σ5(310) [001] Al tilt grain boundary were performed using for the first time three different potentials based on the embedded atom method (EAM). The EAM potentials that produce more accurate melting temperatures also yield activation energies in better agreement with experimental data. Compared to pair potentials, the EAM potentials also give more accurate results.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Peterson, N. L., Int. Metall. Rev. 28, 65 (1983).CrossRefGoogle Scholar
2Balluffi, R. W., Metall. Trans. 13B, 527 (1982).CrossRefGoogle Scholar
3Hwang, J. C. M. and Balluffi, R. W., Scr. Metall. 12, 709 (1978).CrossRefGoogle Scholar
4Plimpton, S. J. and Wolf, E. D., Phys. Rev. B 41, 2712 (1990).CrossRefGoogle Scholar
5Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
6Ma, Q., Liu, C. L., Adams, J. B., and Balluffi, R. W., Acta Metall. Mater. 41, 143 (1993).CrossRefGoogle Scholar
7Ma, Q. and Balluffi, R. W., Acta Metall. Mater. 41, 133 (1993).CrossRefGoogle Scholar
8Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
9Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7893 (1986).CrossRefGoogle Scholar
10Voter, A. F. and Chen, S. P., in Characterization of Defects in Materials, edited by Siegel, R. W., Weertman, J. R., and Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175.Google Scholar
11Erocolessi, F. and Adams, J. B., Europhys. Lett. 26, 583 (1994).CrossRefGoogle Scholar
12Schreiber, H. U. and Grabe, B., Solid-State Electron. 24, 1135 (1981).CrossRefGoogle Scholar
13Liu, C. L. and Plimpton, S. J., Phys. Rev. B 51, 4523 (1995).Google Scholar
14Plimpton, S. J. and Hendrickson, B. A., in Materials Theory and Modelling, edited by Broughton, J., Bristowe, P., and Newsam, J. (Mater. Res. Soc. Symp. Proc. 291, Pittsburgh, PA, 1993), p. 37.Google Scholar