Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T05:05:56.141Z Has data issue: false hasContentIssue false

Molecular dynamics study of crystal plasticity during nanoindentation in Ni nanowires

Published online by Cambridge University Press:  31 January 2011

V. Dupont
Affiliation:
School of Engineering, The University of Vermont, Burlington, Vermont 05405
F. Sansoz*
Affiliation:
School of Engineering, The University of Vermont, Burlington, Vermont 05405
*
a) Address all correspondence to this author. e-mail: frederic.sansoz@uvm.edu
Get access

Abstract

Molecular dynamics simulations were performed to gain fundamental insight into crystal plasticity, and its size effects in nanowires deformed by spherical indentation. This work focused on <111>-oriented single-crystal, defect-free Ni nanowires of cylindrical shape with diameters of 12 and 30 nm. The indentation of thin films was also comparatively studied to characterize the influence of free surfaces in the emission and absorption of lattice dislocations in single-crystal Ni. All of the simulations were conducted at 300 K by using a virtual spherical indenter of 18 nm in diameter with a displacement rate of 1 m·s−1. No significant effect of sample size was observed on the elastic response and mean contact pressure at yield point in both thin films and nanowires. In the plastic regime, a constant hardness of 21 GPa was found in thin films for penetration depths larger than 0.8 nm, irrespective of variations in film thickness. The major finding of this work is that the hardness of the nanowires decreases as the sample diameter decreases, causing important softening effects in the smaller nanowire during indentation. The interactions of prismatic loops and dislocations, which are emitted beneath the contact tip, with free boundaries are shown to be the main factor for the size dependence of hardness in single-crystal Ni nanowires during indentation.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tian, M., Wang, J., Kurtz, J., Mallouk, T.E., and Chan, M.H.W.: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919 (2003).CrossRefGoogle Scholar
2.Mock, J.J., Oldenburg, S.J., Smith, D.R., Schultz, D.A., and Schultz, S.: Composite plasmon resonant nanowires. Nano Lett. 2, 465 (2002).CrossRefGoogle Scholar
3.Husain, A., Hone, J., Postma, H.W.Ch., Huang, X.M.H., Drake, T., Barbic, M., Scherer, A., and Roukes, M.L.: Nanowire-based very-high-frequency electromechanical resonator. Appl. Phys. Lett. 83, 1240 (2003).Google Scholar
4.Bauer, L.A., Birenbaum, N.S., and Meyer, G.J.: Biological applications of high aspect ratio nanoparticles. J. Mater. Chem. 14, 517 (2004).Google Scholar
5.Barrelet, C.J., Greytak, A.B., and CLieber, M.: Nanowire photonic circuit elements. Nano Lett. 4, 1981 (2004).CrossRefGoogle Scholar
6.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).CrossRefGoogle ScholarPubMed
7.Greer, J., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).CrossRefGoogle Scholar
8.Wu, B., Heidelberg, A., and Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525 (2005).CrossRefGoogle ScholarPubMed
9.Dimiduk, D.M., Uchic, M.D., and Parthasarathy, T.A.: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).Google Scholar
10.Greer, J.R. and Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B: Condens. Matter 73, 245410 (2006).CrossRefGoogle Scholar
11.Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).CrossRefGoogle Scholar
12.Tang, H., Schwarz, K.W., and Espinosa, H.D.: Dislocation escaperelated size effects in single-crystal micropillars under uniaxial compression. Acta Mater. 55, 1607 (2007).CrossRefGoogle Scholar
13.Shan, Z.W., Mishra, R.K., Syed Asif, S.A., Warren, O.L., and Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).CrossRefGoogle ScholarPubMed
14.Stan, G., Ciobanu, C.V., Parthangal, P.M., and Cook, R.F.: Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett. 7, 3691 (2007).CrossRefGoogle Scholar
15.Lucas, M., Leach, A.M., McDowell, M.T., Hunyadi, S.E., Gall, K., Murphy, C.J., and Riedo, E.: Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Phys. Rev. B: Condens. Matter 77, 245420 (2008).CrossRefGoogle Scholar
16.Lee, D., Zhao, M., Wei, X., Chen, X., Jun, S.C., Hone, J., Herbert, E.G., Oliver, W.C., and Kysar, J.W.: Observation of plastic deformation in freestanding single crystal Au nanowires. Appl. Phys. Lett. 89, 111916 (2006).CrossRefGoogle Scholar
17.Li, X., Gao, H., Murphy, C.J., and Caswell, K.K.: Nanoindentation of silver nanowires. Nano Lett. 3, 1495 (2003).CrossRefGoogle Scholar
18.Feng, G., Nix, W.D., Yoon, Y., and Lee, C.J.: A study of the mechanical properties of nanowires using nanoindentation. J. Appl. Phys. 99, 074304 (2006).CrossRefGoogle Scholar
19.Tao, X. and Li, X.: Catalyst-free synthesis, structural, and mechanical characterization of twinned Mg2B2O5 nanowires. Nano Lett. 8, 505 (2008).Google Scholar
20.Zhang, H., Tang, J., Zhang, L., An, B., and Qin, L.C.: Atomic force microscopy measurement of the Young's modulus and hardness of single LaB6 nanowires. Appl. Phys. Lett. 92, 173121 (2008).CrossRefGoogle Scholar
21.Bansal, S., Toimil-Molares, E., Saxena, A., and Tummala, R.R.: Nanoindentation of single crystal and polycrystalline copper nanowires. Elec. Comp. Tech. Conf. 1, 71 (2005).Google Scholar
22.Fang, T.H. and Chang, W.J.: Nanolithography and nanoindentation of tantalum-oxide nanowires and nanodots using scanning-probe microscopy. Physica B (Amsterdam) 352, 190 (2004).CrossRefGoogle Scholar
23.Rabkin, E. and Srolovitz, D.J.: Onset of plasticity in gold nanopillar compression. Nano Lett. 7, 101 (2007).CrossRefGoogle ScholarPubMed
24.Rabkin, E., Nam, H-S., and Srolovitz, D.J.: Atomistic simulation of the deformation of gold nanopillars. Acta Mater. 55, 2085 (2007).CrossRefGoogle Scholar
25.Afanasyev, K.A. and Sansoz, F.: Strengthening in gold nanopillars with nanoscale twins. Nano Lett. 7, 2056 (2007).CrossRefGoogle Scholar
26.Zhu, T., Li, J., Samanta, A., Leach, A., and Gall, K.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).CrossRefGoogle ScholarPubMed
27.Cao, A. and Ma, E.: Sample shape and temperature strongly influence the yield strength of metallic nanopillars. Acta Mater. 56, 4816 (2008).CrossRefGoogle Scholar
28.Mishin, Y., Farkas, D., Mehl, M.J., and Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B: Condens. Matter 59, 3393 (1999).Google Scholar
29.Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M., and Nix, W.D.: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901 (2003).CrossRefGoogle Scholar
30.Feichtinger, D., Derlet, P.M., and Van Swygenhoven, H.: Atomistic simulations of spherical indentations in nanocrystalline gold. Phys. Rev. B: Condens. Matter 67, 024113 (2003).CrossRefGoogle Scholar
31.Ackland, G.J. and Jones, A.P.: Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B: Condens. Matter 73, 054104 (2006).CrossRefGoogle Scholar
32.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).CrossRefGoogle Scholar
33.Meyers, M.A. and Chawla, K.K.: Mechanical Behavior of Materials (Prentice Hall, Upper Saddle River, NJ, 1999).Google Scholar
34.Li, J.: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11, 173 (2003).CrossRefGoogle Scholar
35.Liang, H., Upmanyu, M., and Huang, H.: Size-dependent elasticity of nanowires: Nonlinear effects. Phys. Rev. B: Condens. Matter 71, 241403 (2005).Google Scholar
36.Cuenot, S., Frétigny, C., Demoustier-Champagne, S., and Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B: Condens. Matter 69, 165410 (2004).CrossRefGoogle Scholar
37.Nair, A.K., Parker, E., Gaudreau, P., Farkas, D., and Kriz, R.D.: Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study. Int. J. Plast. 24, 2016 (2008).CrossRefGoogle Scholar
38.Li, J., Van Vliet, K.J., Zhu, T., Yip, S., and Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).CrossRefGoogle ScholarPubMed
39.Choi, Y., Van Vliet, K.J., Li, J., and Suresh, S.: Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. J. Appl. Phys. 94, 6050 (2003).Google Scholar
40.Soifer, Y.A.M., Verdyan, A., Kazakevich, M., and Rabkin, E.: Edge effect during nanoindentation of thin copper films. Mater. Lett. 59, 1434 (2005).CrossRefGoogle Scholar
41.Minor, A.M., Morris, J.W. Jr, and Stach, E.A.: Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625 (2001).Google Scholar
42.Choi, Y. and Suresh, S.: Nanoindentation of patterned metal lines on a Si substrate. Scr. Mater. 48, 249 (2003).CrossRefGoogle Scholar
43.Hyde, B., Espinosa, H.D., and Farkas, D.: An atomistic investigation of elastic and plastic properties of Au nanowires. JOM 57, 62 (2005).Google Scholar
44.Bedoui, F., Sansoz, F., and Murthy, N.S.: Incidence of nanoscale heterogeneity on the nanoindentation of a semicrystalline polymer: Experiments and modeling. Acta Mater. 56, 2296 (2008).CrossRefGoogle Scholar
45.Plimpton, S.J.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar