Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T07:56:06.916Z Has data issue: false hasContentIssue false

Monotonic and cyclic mechanical reliability of metallization lines on polymer substrates

Published online by Cambridge University Press:  21 April 2017

Oleksandr Glushko
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Department of Material Physics, Montanuniversität Leoben, Leoben A-8700, Austria
Andreas Klug
Affiliation:
NanoTecCenter Weiz Forschungsgesellschaft mbH, Weiz A-8160, Austria
Emil J.W. List-Kratochvil
Affiliation:
Institut für Physik, Institut für Chemie & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
Megan J. Cordill*
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Department of Material Physics, Montanuniversität Leoben, Leoben A-8700, Austria
*
a) Address all correspondence to this author. e-mail: megan.cordill@oeaw.ac.at
Get access

Abstract

Mechanical stability of Ag and Cu printed and evaporated metallization lines on polymer substrates is investigated by means of monotonic tensile and cyclic bending tests. It is shown that lines which demonstrate good performance during monotonic tests fail at lower strains during a cyclic bending tests. Evaporated lines with the grain size of several hundreds of nanometers have good ductility and consequently good stability during monotonic loading but at the same time they fail at low strains during cyclic bending. Printed lines with nanocrystalline microstructure, in contrast, demonstrate more intensive cracking during monotonic loading but higher failure strains during cyclic bending. Apart from the grain size effect, the effect of film thickness on the saturation crack density after cyclic bending is also demonstrated. Thinner films have higher crack density in accordance with the shear lag model.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present Address: AVL List GmbH, Hans-List-Platz 1, A-8020 Graz, Austria, andreas.klug@avl.com

Contributing Editor: Erik G. Herbert

References

REFERENCES

Nau, S., Wolf, C., Sax, S., and List-Kratochvil, E.J.W.: Organic non-volatile resistive photo-switches for flexible image detector arrays. Adv. Mater. 27, 1048 (2015).CrossRefGoogle ScholarPubMed
Nau, S., Wolf, C., Popovic, K., Blümel, A., Santoni, F., Gagliardi, A., di Carlo, A., Sax, S., and List-Kratochvil, E.J.W.: Inkjet-printed resistive switching memory based on organic dielectric materials: From single elements to array technology. Adv. Electron. Mater. 1, 140003-1 (2015).CrossRefGoogle Scholar
Graz, I., Kaltenbrunner, M., Keplinger, C., Schwödiauer, R., Bauer, S., Lacour, S.P., and Wagner, S.: Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Appl. Phys. Lett. 89, 073501-1 (2006).CrossRefGoogle Scholar
Koo, M., Il Park, K., Lee, S.H., Suh, M., Jeon, D.Y., Choi, J.W., Kang, K., and Lee, K.J.: Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12, 4810 (2012).CrossRefGoogle ScholarPubMed
Klug, A., Patter, P., Popovic, K., Blümel, A., Sax, S., Lenz, M., Glushko, O., Cordill, M.J., and List-Kratochvil, E.J.W.: Recent progress in printed 2/3D electronic devices. In. Proc. Spie 9569, List Kratochvil, E.J.W., ed. (SPIE, San Diego, 2015); p. 95690N.Google Scholar
Woo, N.C., Cherenack, K., Tröster, G., and Spolenak, R.: Designing micro-patterned Ti films that survive up to 10% applied tensile strain. Appl. Phys. A 100, 281 (2010).Google Scholar
Lu, N., Wang, X., Suo, Z., and Vlassak, J.J.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909-1 (2007).CrossRefGoogle Scholar
Marx, V.M., Toth, F., Wiesinger, A., Berger, J., Kirchlechner, C., Cordill, M.J., Fischer, F.D., Rammerstorfer, F.G., and Dehm, G.: The influence of a brittle Cr interlayer on the deformation behavior of thin Cu films on flexible substrates: Experiment and model. Acta Mater. 89, 278 (2015).Google Scholar
Olliges, S., Gruber, P.A., Auzelyte, V., Ekinci, Y., Solak, H.H., and Spolenak, R.: Tensile strength of gold nanointerconnects without the influence of strain gradients. Acta Mater. 55, 5201 (2007).Google Scholar
Frank, S., Handge, U.A., Olliges, S., and Spolenak, R.: The relationship between thin film fragmentation and buckle formation: Synchrotron-based in situ studies and two-dimensional stress analysis. Acta Mater. 57, 1442 (2009).Google Scholar
Gruber, P.A., Arzt, E., and Spolenak, R.: Brittle-to-ductile transition in ultrathin Ta/Cu film systems. J. Mater. Res. 24, 1906 (2009).CrossRefGoogle Scholar
Cordill, M.J., Fischer, F.D., Rammerstorfer, F.G., and Dehm, G.: Adhesion energies of Cr thin films on polyimide determined from buckling: Experiment and model. Acta Mater. 58, 5520 (2010).CrossRefGoogle Scholar
Erdem Alaca, B., Saif, M.T.A., and Sehitoglu, H.: On the interface debond at the edge of a thin film on a thick substrate. Acta Mater. 50, 1197 (2002).CrossRefGoogle Scholar
Andersons, J., Tarasovs, S., and Leterrier, Y.: Evaluation of thin film adhesion to a compliant substrate by the analysis of progressive buckling in the fragmentation test. Thin Solid Films 517, 2007 (2009).Google Scholar
Glushko, O. and Cordill, M.J.: Electrical resistance of metal films on polymer substrates. Exp. Tech. 40, 303 (2016).CrossRefGoogle Scholar
Glushko, O., Marx, V.M., Kirchlechner, C., Zizak, I., and Cordill, M.J.: Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain. Thin Solid Films 552, 141 (2014).Google Scholar
Wyss, A., Schamel, M., Sologubenko, A.S., Denk, R., Hohage, M., Zeppenfeld, P., and Spolenak, R.: Reflectance anisotropy spectroscopy as a tool for mechanical characterization of metallic thin films. J. Phys. D: Appl. Phys. 48, 415303-1 (2015).Google Scholar
Sim, G.D., Hwangbo, Y., Kim, H.H., Lee, S.B., and Vlassak, J.J.: Fatigue of polymer-supported Ag thin films. Scr. Mater. 66, 915 (2012).CrossRefGoogle Scholar
Lambricht, N., Pardoen, T., and Yunus, S.: Giant stretchability of thin gold films on rough elastomeric substrates. Acta Mater. 61, 540 (2013).Google Scholar
Putz, B., Schoeppner, R.L., Glushko, O., Bahr, D.F., and Cordill, M.J.: Improved electro-mechanical performance of gold films on polyimide without adhesion layers. Scr. Mater. 102, 23 (2015).CrossRefGoogle ScholarPubMed
Choa, S-H., Cho, C-K., Hwang, W-J., Tae Eun, K., and Kim, H-K.: Mechanical integrity of flexible InZnO/Ag/InZnO multilayer electrodes grown by continuous roll-to-roll sputtering. Sol. Energy Mater. Sol. Cells 95, 3442 (2011).Google Scholar
Glushko, O., Cordill, M.J., Klug, A., and List-Kratochvil, E.J.W.: The effect of bending loading conditions on the reliability of inkjet printed and evaporated silver metallization on polymer substrates. Microelectron. Reliab. 56, 109 (2016).Google Scholar
Guan, Q., Laven, J., Bouten, P.C.P., and de With, G.: Mechanical failure of brittle thin films on polymers during bending by two-point rotation. Thin Solid Films 611, 107 (2016).Google Scholar
Vellinga, W.P., De Hosson, J.T.M., and Bouten, P.C.P.: Direct measurement of intrinsic critical strain and internal strain in barrier films. J. Appl. Phys. 110, 044907-1 (2011).CrossRefGoogle Scholar
Kim, B.J., Shin, H.A.S., Lee, J.H., Yan, T.Y., Haas, T., Gruber, P., Chou, I.S., Kraft, O., and Joo, Y.C.: Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. J. Mater. Res. 29, 2827 (2014).CrossRefGoogle Scholar
Kim, B-J., Haas, T., Friederich, A., Lee, J-H., Nam, D-H., Binder, J.R., Bauer, W., Choi, I-S., Joo, Y-C., Gruber, P.A., and Kraft, O.: Improving mechanical fatigue resistance by optimizing the nanoporous structure of inkjet-printed Ag electrodes for flexible devices. Nanotechnology 25, 125706-1 (2014).CrossRefGoogle ScholarPubMed
Sim, G-D., Lee, Y-S., Lee, S-B., and Vlassak, J.J.: Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films. Mater. Sci. Eng., A 575, 86 (2013).Google Scholar
Schwaiger, R. and Kraft, O.: Size effects in the fatigue behavior of thin Ag films. Acta Mater. 51, 195 (2003).CrossRefGoogle Scholar
Kraft, O., Wellner, P., Hommel, M., Schwaiger, R., and Arzt, E.: Fatigue behavior of polycrystalline thin copper films. Zeitschrift Fuer Met. Res. Adv. Tech. 93, 392 (2002).Google Scholar
Zhang, G.P., Volkert, C.A., Schwaiger, R., Arzt, E., and Kraft, O.: Damage behavior of 200-nm thin copper films under cyclic loading. J. Mater. Res. 20, 201 (2005).Google Scholar
Wang, D., Gruber, P.A., Volkert, C.A., and Kraft, O.: Influences of Ta passivation layers on the fatigue behavior of thin Cu films. Mater. Sci. Eng., A 610, 33 (2014).Google Scholar
Gruber, P.A., Böhm, J., Onuseit, F., Wanner, A., Spolenak, R., and Arzt, E.: Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: A study by synchrotron and bulge test techniques. Acta Mater. 56, 2318 (2008).Google Scholar
Cordill, M.J. and Taylor, A.A.: Thickness effect on the fracture and delamination of titanium films. Thin Solid Films 589, 209 (2015).CrossRefGoogle Scholar
Kim, S., Won, S., Sim, G-D., Park, I., and Lee, S-B.: Tensile characteristics of metal nanoparticle films on flexible polymer substrates for printed electronics applications. Nanotechnology 24, 085701-1 (2013).Google Scholar
Greer, J.R. and Street, R.A.: Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 55, 6345 (2007).Google Scholar
Gamerith, S., Klug, A., Scheiber, H., Scherf, U., Moderegger, E., and List, E.J.W.: Direct ink-jet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications. Adv. Funct. Mater. 17, 3111 (2007).Google Scholar
Lu, N., Suo, Z., and Vlassak, J.J.: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 1679 (2010).CrossRefGoogle Scholar
Pande, C.S. and Cooper, K.P.: Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54, 689 (2009).Google Scholar
Glushko, O., Klug, A., List-Kratochvil, E.J.W., and Cordill, M.J.: Relationship between mechanical damage and electrical degradation in polymer-supported metal films subjected to cyclic loading. Mater. Sci. Eng., A 662, 157 (2016).CrossRefGoogle Scholar
Agrawal, D.C. and Raj, R.: Measurement of the ultimate shear strength of a metal–ceramic interface. Acta Metall. 37, 1265 (1989).Google Scholar
Hsueh, C.H. and Yanaka, M.: Multiple film cracking in film/substrate systems with residual stresses and unidirectional loading. J. Mater. Sci. 38, 1809 (2003).Google Scholar
Yanaka, M., Tsukahara, Y., Nasako, N., and Takeda, N.: Cracking phenomena of brittle films in nanostructure composites analysed by a modified shear lag model with residual strain. J. Mater. Sci. 33, 2111 (1998).Google Scholar
Ahmed, F., Bayerlein, K., Rosiwal, S.M., Göken, M., and Durst, K.: Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate: Analysis by micro-Raman spectroscopy and analytical modelling. Acta Mater. 59, 5422 (2011).Google Scholar