Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-15T02:24:38.974Z Has data issue: false hasContentIssue false

Monte Carlo simulations of long-range order kinetics in B2 phases

Published online by Cambridge University Press:  03 March 2011

K. Yaldram*
Affiliation:
IPCMS-GEMME, 23, rue du Loess, 67037 Strasbourg, Cedex, France
V. Pierron-Bohnes
Affiliation:
IPCMS-GEMME, 23, rue du Loess, 67037 Strasbourg, Cedex, France
M.C. Cadeville
Affiliation:
IPCMS-GEMME, 23, rue du Loess, 67037 Strasbourg, Cedex, France
M.A. Khan
Affiliation:
IPCMS-GEMME, 23, rue du Loess, 67037 Strasbourg, Cedex, France
*
a)Permanent address: Nuclear Physics Division, Pakistan Institute of Nuclear Science and Technology, Post-Office Nilore, Islamabad, Pakistan.
Get access

Abstract

The thermodynamic parameters that drive the atomic migration in B2 alloys are studied using Monte-Carlo simulations. The model is based on a vacancy jump mechanism between nearest neighbor sites, with a constant vacancy concentration. The ordering energy is described through an Ising Hamiltonian with interaction potentials between first and second nearest neighbors. Different migration barriers are introduced fur A and B atoms. The results of the simulations compare very well with those of experiments. The ordering kinetics are well described by exponential-like behaviors with two relaxation times whose temperature dependences are Arrhenius laws yielding effective migration energies. The ordering energy contributes significantly to the total migration energy.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dahmani, C. E., Cadeville, M. C., and Pierron-Bohnes, V., Acta Metall. 33, 369377 (1985).CrossRefGoogle Scholar
2Cadeville, M. C., Pierron-Bohnes, V., and Kozubski, R., in Ordering and Disordering in Alloys, edited by Yavari, A. R. (Elsevier Applied Science, London and New York, 1992), pp. 7994.CrossRefGoogle Scholar
3Kozubski, R., Soltys, J., Cadeville, M. C., Pierron-Bohnes, V., Kim, T. H., Schwander, P., Hahn, J. P., Kostorz, G., and Morgiel, J., Intermetallics 1, 139150 (1993).CrossRefGoogle Scholar
4Dimitrov, C., Tarfa, T., and Dimitrov, O., in Ordering and Disordering in Alloys, edited by Yavari, A. R. (Elsevier Applied Science, London and New York, 1992), pp. 130137.CrossRefGoogle Scholar
5Chen, H. and Cohen, J. B., J. Phys. (Paris) 38, C7, 314327 (1977).CrossRefGoogle Scholar
6Yaldram, K. and Binder, K., J. Phys. 62, 161175 (1991).Google Scholar
7Fultz, B., J. Chem. Phys. 88, 32273229 (1988); Fultz, B. and Anthony, L., Philos. Mag. Lett. 59, 237241 (1989); Ouyang, H. and Fultz, B., J. Appl. Phys. 66, 47524755 (1989).CrossRefGoogle Scholar
8Anthony, L. and Fultz, B., J. Mater. Res. 9, 348356 (1994).CrossRefGoogle Scholar
9Finel, A., 1987, Thèse d'état, Université Pierre et Marie Curie, Paris.Google Scholar
10Schober, H. R., Petty, W., and Trampenau, J., J. Phys.: Condens. Matter 4, 93219338 (1992).Google Scholar
11Glauber, R. J., J. Math. Phys. 4, 294 (1963).CrossRefGoogle Scholar
12Sato, H. and Kikuchi, R., Acta Metall. 24, 797 (1976).CrossRefGoogle Scholar