Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:55:49.091Z Has data issue: false hasContentIssue false

The more shearing, the thicker shear band and heat-affected zone in bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

H. Guo
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
J. Wen
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
N.M. Xiao
Affiliation:
Department for Special Environment Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Z.F. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
M.L. Sui*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. email: mlsui@imr.ac.cn
Get access

Abstract

In a compression test for a Zr-based bulk metallic glass, a dominant shear band was preserved before fracture by a cylindrical stopper. A heat-affected zone (HAZ) ∼10 μm thick together with shear band was discovered in the center of the deformed sample by preferential ion milling. By using a low aspect ratio sample for compression, diverse micron-scaled HAZs among multiple shear bands were also revealed. Based on above experimental results and the isothermal source model, it was found that the thickness of shear band and its HAZ increased continuously with the progression of shear deformation.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schuh, C.A., Hufnagel, T.C.Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 2007CrossRefGoogle Scholar
2Greer, A.L.: Metallic glasses. Science 267, 1947 1995CrossRefGoogle ScholarPubMed
3Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977CrossRefGoogle Scholar
4Leamy, H.J., Chen, H.S.Wang, T.T.: Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699 1972CrossRefGoogle Scholar
5Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X.Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 2007CrossRefGoogle ScholarPubMed
6Zhang, Y., Wang, W.H.Greer, A.L.: Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857 2006CrossRefGoogle ScholarPubMed
7Zhang, Z.F., Zhang, H., Pan, X.F., Das, J.Eckert, J.: Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos. Mag. Lett. 85, 513 2005CrossRefGoogle Scholar
8Bei, H., Xie, S.George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 2006CrossRefGoogle Scholar
9Donovan, P.E.Stobbs, W.M.: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 1981CrossRefGoogle Scholar
10Pekarskaya, E., Kim, C.P.Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 2001CrossRefGoogle Scholar
11Bailey, N.P., Schiøtz, J.Jacobsen, K.W.: Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses. Phys. Rev. B 73, 064108 2006CrossRefGoogle Scholar
12Zhang, Y.Greer, A.L.: Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89, 071907 2006CrossRefGoogle Scholar
13Liu, C.T., Heatherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A.Inoue, A.: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811 1998CrossRefGoogle Scholar
14Wright, W.J., Schwarz, R.B.Nix, W.D.: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng., A 319–321, 229 2001CrossRefGoogle Scholar
15Yang, B., Liu, C.T., Neih, T.G., Morrison, M.L., Liaw, P.K.Buchanan, R.A.: Localized heating and fracture criterion for bulk metallic glasses. J. Mater. Res. 21, 915 2006CrossRefGoogle Scholar
16Lewandowski, J.J.Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 2006CrossRefGoogle Scholar
17Pampillo, C.A.: Localized shear deformation in a glassy metal. Scr. Metall. 6, 915 1972CrossRefGoogle Scholar
18Krishnanand, K.D.Cahn, R.W.: Recovery from plastic deformation in a Ni/Nb alloy glass. Scr. Metall. 9, 1259 1975CrossRefGoogle Scholar
19Mondal, K., Kumar, G., Ohkubo, T., Oishi, K., Mukai, T.Hono, K.: Large apparent compressive strain of metallic glasses. Philos. Mag. Lett. 87, 625 2007CrossRefGoogle Scholar
20Li, J., Wang, Z.L.Hufnagel, T.C.: Characterization of nanometerscale defects in metallic glasses by quantitative high-resolution transmission electron microscopy. Phys. Rev. B 65, 144201 2002CrossRefGoogle Scholar
21Jiang, W.H.Atzmon, M.: The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: A high-resolution transmission-electron-microscopy study. Acta Mater. 51, 4095 2003CrossRefGoogle Scholar
22Treacy, M.M.J., Gibson, J.M.Keblinski, P.J.: Paracrystallites observed in evaporated amorphous tetrahedral semiconductors. J. Non-Cryst. Solids 231, 99 1998CrossRefGoogle Scholar
23Li, J., Gu, X.Hufnagel, T.C.: Using fluctuation microscopy to characterize structural order in metallic glasses. Microsc. Microanal. 9, 509 2003CrossRefGoogle ScholarPubMed
24Hufnagel, T.C., Jiao, T., Li, Y., Xing, L-Q.Ramesh, K.T.: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17, 1441 2002CrossRefGoogle Scholar
25Glade, S.C., Bush, R., Lee, D.S., Johnson, W.L., Wunderlich, R.K.Fecht, H.J.: Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J. Appl. Phys. 87, 7242 2000CrossRefGoogle Scholar
26Chen, H.S.Goldstein, M.: Anomalous viscoelastic behavior of metallic glasses of Pd–Si-based alloys. J. Appl. Phys. 43, 1642 1972CrossRefGoogle Scholar