Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T01:32:50.807Z Has data issue: false hasContentIssue false

The morphology of organic nanocolumn arrays: Amorphous versus crystalline solids

Published online by Cambridge University Press:  31 January 2011

Jian Zhang*
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Ingo Salzmann
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Peter Schäfer
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Martin Oehzelt
Affiliation:
Institut für Experimentalphysik, Johannes Kepler Universität Linz, A-4040 Linz, Austria
Steffen Duhm
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Jürgen P. Rabe
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Norbert Koch*
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Get access

Abstract

The morphology of nanocolumns grown by glancing angle deposition is studied for molecular materials forming amorphous and crystalline solids. Amorphous tris(8-hydroxyquinoline)aluminum nanocolumn arrays were obtained at sample rotation speeds varying from 0.3 rpm (revolutions per minute) to 30 rpm. For crystalline pentacene, an array of regular nanocolumns formed at a rotation speed of 3 rpm, while higher and lower rotation speeds led to a wide distribution of column heights and shapes. The incoming molecular flux and the molecular diffusion length on column surfaces, both dependent on rotation speed, were found to govern the resulting morphology of crystalline pentacene nanocolumns.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hrudey, P.C.P.Westra, K.L., and Brett, M.J.: Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition. Adv. Mater. 18, 224 (2006).CrossRefGoogle Scholar
2Hrudey, P.C.P., Szeto, B. and Brett, M.J.: Strong circular Bragg phenomena in self-ordered porous helical nanorod arrays of Alq3. Appl. Phys. Lett. 88, 251106 (2006).Google Scholar
3Zhang, J.Salzmann, I.Zhang, F.J., Xu, Z.Rogaschewski, S.Rabe, J.P., and Koch, N.: Arrays of crystalline C60 and pentacene nanocolumns. Appl. Phys. Lett. 90, 193117 (2007).CrossRefGoogle Scholar
4Horowitz, G.: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
5Sirringhaus, H.Tessler, N. and Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).Google Scholar
6Pope, M. and Swenberg, C.E.: Electronic Processes in Organic Crystals and Polymers (Oxford University Press, Oxford, UK, 1999).CrossRefGoogle Scholar
7Dimitrakopoulos, C.D. and Malenfant, P.R.L.: Organic thin film transistors for large area electronics. Adv. Mater. 14, 99 (2002).Google Scholar
8Chabinyc, M.L. and Salleo, A.: Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays. Chem. Mater. 16, 4509 (2004).CrossRefGoogle Scholar
9Young, N.O. and Kowal, J.: Optically active fluorite films. Nature 183, 104 (1959).CrossRefGoogle Scholar
10Robbie, K.Brett, M.J., and Lakhtakia, A.: Chiral sculptured thin films. Nature 384, 616 (1996).Google Scholar
11Robbie, K. and Brett, M.J.: Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J. Vac. Sci. Technol., A 15, 1460 (1997).Google Scholar
12Zhao, Y.P., Ye, D.X., Wang, G.C., and Lu, T.M.: Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Lett. 2, 351 (2002).CrossRefGoogle Scholar
13Robbie, K.Shafai, C. and Brett, M.J.: Thin films with nanometer-scale pillar microstructure. J. Mater. Res. 14, 3158 (1999).CrossRefGoogle Scholar
14Robbie, K.Friedrich, L.J., Dew, S.K., Smy, T. and Brett, M.J.: Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol., A 13, 1032 (1995).CrossRefGoogle Scholar
15Dick, B.Brett, M.J., and Smy, T.: Investigation of substrate rotation at glancing incidence on thin-film morphology. J. Vac. Sci. Technol., B 21, 2569 (2003).Google Scholar
16Forrest, S.R.: Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793 (1997).Google Scholar
17Ruiz, R.Choudhary, D.Nickel, B.Toccoli, T.Chang, K.C., Mayer, A.C., Clancy, P.Blakely, J.M., Headrick, R.L., Iannotta, S. and Malliaras, G.G.: Pentacene thin film growth. Chem. Mater. 16, 4497 (2004).Google Scholar
18Cölle, M. and Brütting, W.: Thermal, structural and photophysical properties of the organic semiconductor Alq3. Phys. Status Solidi A 201, 1095 (2004).Google Scholar
19Shi, J. and Tang, C.: Doped organic electroluminescent devices with improved stability. Appl. Phys. Lett. 70, 1665 (1997).Google Scholar
20Berleb, S. and Brütting, W.: Dispersive electron transport in tris (8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy. Phys. Rev. Lett. 89, 286601 (2002).Google Scholar
21Schiefer, S.Huth, M.Dobrinevski, A. and Nickel, B.: Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc. 129, 10316 (2007).Google Scholar
22Nabok, D.Puschnig, P.Ambrosch-Draxl, C., Werzer, O.Resel, R. and Smilgies, D-M.: Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations. Phys. Rev. B 76, 235322 (2007).Google Scholar
23Yoshida, H.Inaba, K. and Sato, N.: X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene. Appl. Phys. Lett. 90, 181930 (2007).CrossRefGoogle Scholar
24Mattheus, C.C., Dros, A.B., Baas, J.Meetsma, A.J., Boer, L. and Palstra, T.T.M.: Polymorphism in pentacene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57, 939 (2001).Google Scholar
25Campbell, R.B., Robertson, J.M., and Trotter, J.: The crystal structure of hexacene, and a revision of the crystallographic data for tetracene. Acta Crystallogr. 15, 289 (1962).Google Scholar
26Steudel, S.Vusser, S.D., Jonge, S.D., Janssen, D.Verlaak, S.Genoe, J. and Heremans, P.: Influence of the dielectric roughness on the performance of pentacene transistors. Appl. Phys. Lett. 85, 4400 (2004).CrossRefGoogle Scholar
27Yang, H.Kim, S.H., Yang, L.Yang, S.Y., and Park, C.E.: Pentacene nanostructures on surface-hydrophobicity-controlled polymer/ SiO2 bilayer gate-dielectrics. Adv. Mater. 19, 2868 (2007).CrossRefGoogle Scholar