Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T00:01:00.656Z Has data issue: false hasContentIssue false

Multielement ultratrace analysis of molybdenum with high performance secondary ion mass spectrometry

Published online by Cambridge University Press:  31 January 2011

A. Virag
Affiliation:
Institute for Analytical Chemistry, Laboratory for Physical Analysis, University of Technology Vienna, Getreidemarkt 9, A-1060 Vienna, Austria
G. Friedbacher
Affiliation:
Institute for Analytical Chemistry, Laboratory for Physical Analysis, University of Technology Vienna, Getreidemarkt 9, A-1060 Vienna, Austria
M. Grasserbauer*
Affiliation:
Institute for Analytical Chemistry, Laboratory for Physical Analysis, University of Technology Vienna, Getreidemarkt 9, A-1060 Vienna, Austria
H. M. Ortner
Affiliation:
Metallwerk Plansee GmbH., A-6600 Reutte, Austria
P. Wilhartitz
Affiliation:
Metallwerk Plansee GmbH., A-6600 Reutte, Austria
*
a)Address for correspondence: Dr. M. Grasserbauer, Institute for Analytical Chemistry, University of Technology Vienna, Getreidemarkt 9, A-1060 Vienna, Austria.
Get access

Abstract

Electron beam melting has been used to obtain ultrapure refractory metals that are gaining importance in metal oxide semiconductor-very large scale integration (MOS-VLSI) processing technology, fusion reactor technology, or as superconducting materials. Although the technology of electron beam melting is well established in the field of production of very clean refractory metals, little is known about the limitations of the method because the impurity level of the final products is frequently below the detection power of common methods for trace analysis. Characterization of these materials can be accomplished primarily by in situ methods like neutron activation analysis and mass spectrometric methods [glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS)]. A suitable method for quantitative multielement ultratrace bulk analysis of molybdenum with SIMS has been developed. Detection limits of the analyzed elements from 10−7g/gdown to 10−12g/g have been found. Additional information about the distribution of the trace elements has been accumulated.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mori, N. and Kambara, S. in the Proceedings of an AMAX Symposium, edited by Miska, K. H.Semchyshen, M.Whelan, E. P. and Kruzich, D. J. (AMAX, Inc., Greenwich, CT, 1985), p. 53.Google Scholar
2Vernickel, H. in the Proceedings of the 11th International Plansee Seminar 1985, edited by Bildstein, H. and Ortner, H. M. (Tyrolia, Innsbruck, 1986), Vol. 3, pp. 287293.Google Scholar
3Giancarli, L.J. Nucl. Mater. 139, 1 (1986).CrossRefGoogle Scholar
4Schulze, K. K.J. Metal. 33, 33 (1981).Google Scholar
5Hormann, M.The Production of High Thermal Conductivity Niobium on a Technical Scale for High Frequency Superconductors” (company brochure), W. C. Heraeus GmbH, Hanau, Federal Republic of Germany, 1986.Google Scholar
6Superconductor Materials Science Metallurgy, Fabrication and Applications, edited by Foner, S. and Schwartz, B. B. (Plenum, New York, 1981).CrossRefGoogle Scholar
7Aichert, H.Dietrich, W.Stephan, H. and Stumpp, H.in Ref. 2, Vol. 2, pp. 863877.Google Scholar
8Proceedings of the Conference on Electron Beam Melting and Refining State of the Art, Reno, Nevada, 1984.Google Scholar
9Ortner, H. M.Wilhartitz, P.Grasserbauer, M.Virag, A.Fried-bacher, G., Wiinsch, G. and Blordorn, W.Mikrochim. Acta 19871, 233.Google Scholar
10Grasserbauer, M.Charalambous, P.Beske, H. E.Jakubowski, N.Stuewer, D., Vieth, W.Virag, A. and Friedbacher, G.Mikrochim. Acta 19871, 291.Google Scholar
11Sanderson, N. E.Hall, E.Clark, J.Charalambous, P. and Hall, D.Microchim. Acta 19871, 275.Google Scholar
12Wilhartitz, P.Virag, A.Friedbacher, G.Grasserbauer, M. and Ortner, H. M.Fresenius Z. Anal. Chem. 329, 228 (1987).CrossRefGoogle Scholar
13Grasserbauer, M.Ortner, H. M.Wilhartitz, P.Pimminger, M. and Leuprecht, R.Fresenius Z. Anal. Chem. 317, 539 (1984).CrossRefGoogle Scholar
14Degreve, F.Thorne, N. A. and Lang, J. M.Fresenius Z. Anal. Chem. 329, 410 (1987).CrossRefGoogle Scholar
15Scherer, V. and Hirschfeld, D.Erzmetall 40, 611 (1987).Google Scholar
16CRC-Handbook of Chemistry and Physics, 47th ed., 1966-1967.Google Scholar
17Ortner, H. M.Wilhartitz, P.Grasserbauer, M.Virag, A. and Friedbacher, G. in Proceedings of the 31st Annual Conference of the European Organizationfor Quality Control, Munich (Deutsche Ge-sellschaft fur Qualitat e.V., Frankfurt, Federal Republic of Germany, 1987), Vol. 1, pp. 443454.Google Scholar