Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T08:22:29.574Z Has data issue: false hasContentIssue false

A multiscale study of misfit dislocations in PbTe/PbSe(001) heteroepitaxy

Published online by Cambridge University Press:  29 April 2019

Yang Li*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
Zhaochuan Fan
Affiliation:
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
Weixuan Li*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
David L. McDowell
Affiliation:
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Youping Chen
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
*
a)Address all correspondence to this author. e-mail: yangli1991@ufl.edu
Get access

Abstract

In this work, we investigate misfit dislocations in PbTe/PbSe heteroepitaxial systems using the concurrent atomistic–continuum (CAC) method. A potential model containing the long-range Coulombic interaction and short-range Buckingham potential is developed for the system. By considering the minimum potential energy of relaxed interface structures for various initial conditions and PbTe layer thicknesses, the equilibrium structure of misfit dislocations and the dislocation spacings in PbTe/PbSe(001) heteroepitaxial thin films are obtained as a function of the PbTe layer thicknesses grown on a PbSe substrate. The critical layer thickness above which misfit dislocations inevitably form, the structure of the misfit dislocations at the interfaces, and the dependence of average dislocation spacing on PbTe layer thickness are obtained and discussed. The simulation results provide an explanation for the narrowing of the spread of the distribution of misfit dislocation spacing as layer thickness increases in PbTe/PbSe(001) heteroepitaxy.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Frank, F.C. and Van der Merwe, J.H.: One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth. Proc. R. Soc. London, Ser. A 198, 216225 (1949).Google Scholar
Ball, C.A.B. and Van der Merwe, J.H.: Dislocations in Solids, Nabarro, F.R.N., ed. (North-Holland, Amsterdam, 1983); p. 123.Google Scholar
Matthews, J.W. and Blakeslee, A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118125 (1974).Google Scholar
Matthews, J.W.: Defects associated with the accommodation of misfit between crystals. J. Vac. Sci. Technol. 12, 126133 (1975).CrossRefGoogle Scholar
Hull, R. and Bean, J.C.: Misfit dislocations in lattice-mismatched epitaxial films. Crit. Rev. Solid State Mater. Sci. 17, 507546 (1992).CrossRefGoogle Scholar
Ernst, F.: Interface dislocations forming during epitaxial growth of GeSi on (111) Si substrates at high temperatures. Mater. Sci. Eng., A 233, 126138 (1997).CrossRefGoogle Scholar
Schwarz, K.W.: Simulation of dislocations on the mesoscopic scale. II. Application to strained-layer relaxation. J. Appl. Phys. 85, 120129 (1999).CrossRefGoogle Scholar
Mooney, P.M. and Chu, J.O.: SiGe technology: Heteroepitaxy and high-speed microelectronics. Annu. Rev. Mater. Sci. 30, 335362 (2000).CrossRefGoogle Scholar
Sangghaleh, A. and Demkowicz, M.J.: AIDA: A tool for exhaustive enumeration of solutions to the quantized Frank–Bilby equation. Comput. Mater. Sci. 145, 3547 (2018).CrossRefGoogle Scholar
Schneider, M., Rahman, A., and Schuller, I.K.: Role of relaxation in epitaxial growth: A molecular-dynamics study. Phys. Rev. Lett. 55, 604 (1985).CrossRefGoogle ScholarPubMed
Yu, W. and Madhukar, A.: Molecular dynamics study of coherent island energetics, stresses, and strains in highly strained epitaxy. Phys. Rev. Lett. 79, 905 (1997).CrossRefGoogle Scholar
Dong, L., Schnitker, J., Smith, R.W., and Srolovitz, D.J.: Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study. J. Appl. Phys. 83, 217227 (1998).CrossRefGoogle Scholar
Gruber, J., Zhou, X.W., Jones, R.E., Lee, S.R., and Tucker, G.J.: Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces. J. Appl. Phys. 121, 195301 (2017).CrossRefGoogle ScholarPubMed
Kubo, M., Miura, R., Yamauchi, R., Vetrivel, R., and Miyamoto, A.: Mechanism of the formation of ultrafine gold particles on MgO(100) as investigated by molecular dynamics and computer graphics. Appl. Surf. Sci. 89, 131139 (1995).CrossRefGoogle Scholar
Zhang, J., Liu, C., Shu, Y., and Fan, J.: Growth and properties of Cu thin film deposited on Si(001) substrate: A molecular dynamics simulation study. Appl. Surf. Sci. 261, 690696 (2012).CrossRefGoogle Scholar
Meng, L., Sun, Q., Wang, J., and Ding, F.: Molecular dynamics simulation of chemical vapor deposition graphene growth on Ni(111) surface. J. Phys. Chem. C 116, 60976102 (2012).CrossRefGoogle Scholar
Cheng, Y-T., Liang, T., Nie, X., Choudhary, K., Phillpot, S.R., Asthagiri, A., and Sinnott, S.B.: Cu cluster deposition on ZnO$\left( {10\bar{1}0} \right)$: Morphology and growth mode predicted from molecular dynamics simulations. Surf. Sci. 621, 109116 (2014).CrossRefGoogle Scholar
Hassani, A., Makan, A., Sbiaai, K., Tabyaoui, A., and Hasnaoui, A.: Molecular dynamics study of growth and interface structure during aluminum deposition on Ni(100) substrate. Appl. Surf. Sci. 349, 785791 (2015).CrossRefGoogle Scholar
Xiong, L., Deng, Q., Tucker, G.J., McDowell, D.L., and Chen, Y.: Coarse-grained atomistic simulations of dislocations in Al, Ni, and Cu crystals. Int. J. Plast. 38, 86101 (2012).CrossRefGoogle Scholar
Xiong, L., McDowell, D.L., and Chen, Y.: Nucleation and growth of dislocation loops in Cu, Al, and Si by a concurrent atomistic-continuum method. Scr. Mater. 67, 633636 (2012).CrossRefGoogle Scholar
Xiong, L., Tucker, G., McDowell, D.L., and Chen, Y.: Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids 59, 160177 (2011).CrossRefGoogle Scholar
Xu, S., Xiong, L., Chen, Y., and McDowell, D.: Validation of the concurrent atomistic-continuum method on screw dislocation/stacking fault interactions. Crystals 7, 120 (2017).CrossRefGoogle Scholar
Xiong, L., Rigelesaiyin, J., Chen, X., Xu, S., McDowell, D.L., and Chen, Y.: Coarse-grained elastodynamics of fast moving dislocations. Acta Mater. 104, 143155 (2016).CrossRefGoogle Scholar
Xiong, L., Xu, S., McDowell, D.L., and Chen, Y.: Concurrent atomistic–continuum simulations of dislocation–void interactions in fcc crystals. Int. J. Plast. 65, 3342 (2015).CrossRefGoogle Scholar
Chen, X., Li, W., Xiong, L., Li, Y., Yang, S., Zheng, Z., McDowell, D., and Chen, Y.: Ballistic-diffusive phonon heat transport across grain boundaries. Acta Mater. 136, 355365 (2017).CrossRefGoogle Scholar
Yang, S. and Chen, Y.: Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary. Proc. R. Soc. London, Ser. A 471 (2015).CrossRefGoogle ScholarPubMed
Yang, S., Zhang, N., and Chen, Y.: Concurrent atomistic-continuum simulation of polycrystalline strontium titanate. Philos. Mag. 95, 26972716 (2015).CrossRefGoogle Scholar
Chen, Y., Zimmerman, J., Krivtsov, A., and McDowell, D.: Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci 49, 13371349 (2011).CrossRefGoogle Scholar
Chen, Y. and Lee, J.: Atomistic formulation of a multiscale field theory for nano/micro solids. Philos. Mag. 85, 40954126 (2005).CrossRefGoogle Scholar
Chen, Y.: Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009).CrossRefGoogle ScholarPubMed
Chen, Y. and Diaz, A.: Local momentum and heat fluxes in transient transport processes and inhomogeneous systems. Phys. Rev. E 94, 053309 (2016).CrossRefGoogle ScholarPubMed
Chen, Y.: The origin of the distinction between microscopic formulas for stress and Cauchy stress. Europhys. Lett. 116, 34003 (2016).CrossRefGoogle Scholar
Chen, Y. and Diaz, A.: Physical foundation and consistent formulation of atomic-level fluxes in transport processes. Phys. Rev. E 98, 052113 (2018).CrossRefGoogle Scholar
Chen, Y.: Local stress and heat flux in atomistic systems involving three-body forces. J. Chem. Phys. 124, 054113 (2006).CrossRefGoogle ScholarPubMed
Irving, J. and Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817829 (1950).CrossRefGoogle Scholar
Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: Edge dislocations bowing out from a row of collinear obstacles in Al. Scr. Mater. 123, 135139 (2016).CrossRefGoogle Scholar
Xu, S., Xiong, L., Chen, Y., and McDowell, D.L.: Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: A concurrent atomistic-continuum study 2, 15016 (2016).CrossRefGoogle Scholar
Springholz, G. and Wiesauer, K.: Nanoscale dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy. Phys. Rev. Lett. 88, 015507 (2001).CrossRefGoogle ScholarPubMed
Wiesauer, K. and Springholz, G.: Strain relaxation and dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy. Appl. Surf. Sci. 188, 4954 (2002).CrossRefGoogle Scholar
Stukowski, A. and Albe, K.: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell. Simul. Mater. Sci. Eng. 18, 085001 (2010).CrossRefGoogle Scholar
Fan, Z., Koster, R.S., Wang, S., Fang, C., Yalcin, A.O., Tichelaar, F.D., Zandbergen, H.W., van Huis, M.A., and Vlugt, T.J.H.: A transferable force field for CdS–CdSe–PbS–PbSe solid systems. J. Chem. Phys. 141, 244503 (2014).CrossRefGoogle ScholarPubMed
Dalven, R.: A review of the semiconductor properties of PbTe, PbSe, PbS, and PbO. Infrared Phys. 9, 141184 (1969).CrossRefGoogle Scholar
Miller, A.J., Saunders, G.A., and Yogurtcu, Y.K.: Pressure dependences of the elastic constants of PbTe, SnTe and Ge0.08Sn0.92Te. J. Phys. C: Solid State Phys. 14, 1569 (1981).CrossRefGoogle Scholar
Rawat, P.K., Paul, B., and Banerji, P.: Thermoelectric properties of PbSe0.5Te0.5: x (PbI2) with endotaxial nanostructures: A promising n-type thermoelectric material. Nanotechnology 24, 215401 (2013).CrossRefGoogle Scholar
Rittner, J.D. and Seidman, D.N.: 〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Phys. Rev. B 54, 6999 (1996).CrossRefGoogle Scholar