Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T19:17:28.986Z Has data issue: false hasContentIssue false

Nanocrystalline titanium-magnesium alloys through mechanical alloying

Published online by Cambridge University Press:  31 January 2011

C. Suryanarayana
Affiliation:
Wright Research and Development Center, WRDC/MLLS, Wright-Patterson Air Force Base, Ohio 45433-6533
F. H. Froes
Affiliation:
Institute for Materials and Advanced Processes, University of Idaho, Moscow, Idaho 83843-4140
Get access

Abstract

The solid solubility of magnesium in titanium under equilibrium conditions is reported to be extremely small. Mechanical alloying of a mixture of titanium and magnesium powders resulted in the formation of nanocrystalline (10–15 nm in size) grains of Ti–Mg solid solution. This solid solution has a metastable fcc structure with a = 0.426 nm and contains about 3 wt.% (6 at.%) magnesium in it. It is suggested that the fcc structure has formed as a result of the heavy mechanical deformation of the hep structure introduced during milling. High temperature annealing of the metastable solid solution led to its decomposition forming the equilibrium phases, viz., elemental titanium and magnesium.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Murray, J. L., Phase Diagrams of Binary Titanium Alloys (ASM INTERNATIONAL, Metals Park, OH, 1987).Google Scholar
2Goliber, E. W. and McKee, K. H., in Progress in Very High Pressure Research, edited by Bundy, F. P., Hibbard, W. R., and Strong, H. M. (John Wiley & Sons, New York, 1961), p. 126.Google Scholar
3Obinata, I., Takeuchi, Y., and Kawanishi, R., Metall. 13, 392 (1959).Google Scholar
4Frederickson, J. W., Trans. AIME 203, 368 (1955).Google Scholar
5Gilman, P. S. and Benjamin, J. S., Ann. Rev. Mater. Sci. 13, 279 (1983).CrossRefGoogle Scholar
6Sundaresan, R. and Froes, F. H., Key Engg. Materials 29–31, 199 (1989).Google Scholar
7Sundaresan, R. and Froes, F. H., in Proc. 6th World Conference on Titanium, edited by Lacombe, P., Tricot, R., and Beranger, G. (Les Editions de Physique, Les Ulis Cedex, France, 1989), Part II, p. 931.Google Scholar
8Shingu, P. H., Huang, B., Nishitani, S. R., and Nasu, S., Suppl. to Trans. Jpn. Inst. Metals 29, 3 (1988).Google Scholar
9Shlump, W. and Grewe, H., in New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (Deutsche Gesellschaft für Metallkunde, Oberursel, F. R. Germany, 1989), p. 307.Google Scholar
10Shingu, P. H., Huang, B., Kuyama, J., Ishihara, K. N., and Nasu, S., in New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (Deutsche Gesellschaft fur Metallkunde, Oberursel, F. R. Germany, 1989), p. 319.Google Scholar
11Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Mater. Res. 4, 1292 (1989).CrossRefGoogle Scholar
12Fecht, H. J., Han, G., Fu, Z., and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).CrossRefGoogle Scholar
13Suryanarayana, C., Sundaresan, R., and Froes, F. H., in Advances in Powder Metallurgy-1989, compiled by Gasbarre, T. G. and Jandeska, W. F., Jr. (MPIF, Princeton, NJ, 1989), Vol. 3, p. 175.Google Scholar
14Schultz, L., Mater. Sci. & Engg. 97, 15 (1988).CrossRefGoogle Scholar
15Kenik, E. A., Bayuzick, R. J., Kim, M.S., and Koch, C.C., Scripta Metall. 21, 1137 (1987).CrossRefGoogle Scholar
16Suryanarayana, C. and Sundaresan, R., Mater. Sci. & Engg. (in press).Google Scholar
17Weeber, A. W. and Bakker, H., Physica B153, 93 (1988).CrossRefGoogle Scholar
18Hall, I. W., Scandinavian J. Metallurgy 7, 277 (1978).Google Scholar
19Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, U. K., 1975).Google Scholar
20Birringer, R., Mater. Sci. & Engg. A117, 33 (1989).CrossRefGoogle Scholar
21Froes, F. H. and Suryanarayana, C., JOM (J. Minerals, Metals & Materials Soc.) 41 (6), 12 (1989).CrossRefGoogle Scholar
22Suryanarayana, C. and Froes, F. H., in Physical Chemistry of Powder Metals Production and Processing, edited by Murray, W. Small (TMS, Warrendale, PA, 1989), p. 279Google Scholar
23Birringer, R., Hahn, H., Hofler, H., Karch, J., and Gleiter, H., Defeet and Diffusion Forum 59, 17 (1988).CrossRefGoogle Scholar