Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T22:26:43.335Z Has data issue: false hasContentIssue false

Nanoindentation and adhesion of sol-gel-derived hard coatings on polyester

Published online by Cambridge University Press:  31 January 2011

C. M. Chan
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
G. Z. Cao
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
H. Fong
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
M. Sarikaya
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
T. Robinson
Affiliation:
Korry Electronics, Co., Seattle, Washington 98109
L. Nelson
Affiliation:
Korry Electronics, Co., Seattle, Washington 98109
Get access

Extract

We investigated sol-gel-derived silica-based hard coatings on modified polyester substrates. The silica network was modified by incorporating an organic component and adding transition metal oxides. These modifications resulted in tailored thermal, optical, and mechanical properties of the coatings. Various low-temperature densification techniques were studied including sol-preparation procedure, enhanced solvent evaporation, ultraviolet irradiation, and low-temperature heating (below 150 °C). Oxygen plasma etching was applied to improve the adhesion of the sol-gel coatings on the plastic surface. Nanoindentation analysis revealed that the coatings have a surface hardness up to 2.5 ± 0.27 GPa and an elastic modulus up to 13.6 ± 0.4 GPa, approximately an order of magnitude higher than that of the plastic surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Senkevich, J.J. and Desu, S.B., Chem. Vap. Deposition 4, 92 (1998).3.0.CO;2-C>CrossRefGoogle Scholar
2.Hu, I.F., O'Connor, P.J., Tou, J.C., Sedon, J.H., Bales, S.E., and Perettie, D.J., U.S. Patent No. 5 718 967 (17 February 1998).Google Scholar
3.Sliemers, F.A., Nandi, U.S., Behrer, P.C., and Nance, G.P., U.S. Patent No. 4,778,721 (18 October 1988).Google Scholar
4.Shin, H., Collins, R.J., DeGuire, M.R., Heuer, A.H., and Sukenik, C.N., J. Mater. Res. 10, 692 (1995).CrossRefGoogle Scholar
5.Shin, H., Collins, R.J., DeGuire, M.R., Heuer, A.H., and Sukenik, C.N., J. Mater. Res. 10, 699 (1995).CrossRefGoogle Scholar
6.Calvert, P. and Rieke, P., Chem. Mater. 8, 1715 (1996).CrossRefGoogle Scholar
7.Tarasevich, B.J., Rieke, P.C., and Liu, J., Chem. Mater. 8, 292 (1996).CrossRefGoogle Scholar
8.Bunker, B.C., Rieke, P.C., Tarasevich, B.J., Bentjen, S.B., Fryxell, G.E., and Campbell, A.A., Science 264, 48 (1994).CrossRefGoogle Scholar
9.Yoldas, B.E. and Lin, C.C., U.S. Patent No. 4 753 827 (28 June 1988).Google Scholar
10.Wen, J. and Wilkes, G.L., J. Inorganic and Organometallic Polymers 5, 343 (1995).CrossRefGoogle Scholar
11.Wen, J., Vasudevan, V.J., and Wilkes, G.L., J. Sol-Gel Sci. Technol. 5, 115 (1995).CrossRefGoogle Scholar
12.Gupta, N., Sinha, T.J.M, and Varma, I.K., Indian J. Chem. Technol. 4, 130 (1997).Google Scholar
13.Schmidt, H. and Walter, H., J. Non-Cryst. Solids 121, 428 (1990).CrossRefGoogle Scholar
14.Francis, L.F., Mater. Manufacturing Proc. 12, 963 (1997).CrossRefGoogle Scholar
15.Hench, L.L. and West, J.K., Chemical Processing of Advanced Materials (John Wiley & Sons, New York, 1992).CrossRefGoogle Scholar
16.Yoldas, B.E. and Lin, C.C., U.S. Patent No. 4 754 012 (28 June 1988).Google Scholar
17.Ashley, C.S. and Reed, S.T., U.S. Patent No. 4 929 278 (29 May 1990).Google Scholar
18.McGrinniss, V.D., Prog. Organic Coatings, 27, 153 (1996).CrossRefGoogle Scholar
19.Brinker, C.J. and Hurd, A.J., J. Phys. III (France) 4, 1231 (1994).Google Scholar
20.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 4, 1564 (1992).CrossRefGoogle Scholar
21.Innocenz, P., Abdirashid, M.O., and Guglielmi, M., J. Sol-Gel Sci. Technol. 3, 47 (1994).CrossRefGoogle Scholar
22.Matsuda, A., Matsuno, Y., Tatsumisago, M., and Minami, T., J. Am. Ceram. Soc. 81, 2849 (1998).CrossRefGoogle Scholar
23.Cao, G.Z., Lu, Y.F., Delattre, L., Brinker, C.J., and Lopez, G.P., Adv. Mater. 8, 588 (1996).CrossRefGoogle Scholar
24.Belleville, P., Prene, P., Petit, S., and Pieri, R., SID 97 Digest, edited by Morreale, J. (Society for International Display, Santa Ana, CA, 1997), p. 10651068.Google Scholar
25.Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990).Google Scholar
26.Gregg, S.J. and Sing, K.S.W, Adsorption, Surface Area and Porosimetry, 2nd ed. (Academic Press, New York, 1982).Google Scholar
27.Ruthven, D., Principles of Adsorption and Desorption Process (John Wiley & Sons, New York, 1982).Google Scholar
28.Mencik, J., Munz, D., Quandt, E., and Weppelmann, E.R., J. Mater. Res. 12, 2475 (1997).CrossRefGoogle Scholar
29.Imai, H., Yasumori, M., Hirashima, H., Awazu, K., and Onuki, H., J. Appl. Phys. 79, 8304 (1996).CrossRefGoogle Scholar
30.Egitto, F.D. and Matienzo, L.J., IBM J. Res. Develop. 38, 423 (1994).CrossRefGoogle Scholar
31.Gerenser, L.J., J. Adhesion Sci. Technol. 7, 1019 (1993).CrossRefGoogle Scholar