Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T17:05:53.905Z Has data issue: false hasContentIssue false

Nanoindentation and contact-mode imaging at high temperatures

Published online by Cambridge University Press:  01 March 2006

Christopher A. Schuh*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Corinne E. Packard
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Alan C. Lund
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a) Address all correspondence to this author. e-mail: schuh@mit.edu
Get access

Abstract

Technical issues surrounding the use of nanoindentation at elevated temperatures are discussed, including heat management, thermal equilibration, instrumental drift, and temperature-induced changes to the shape and properties of the indenter tip. After characterizing and managing these complexities, quantitative mechanical property measurements are performed on a specimen of standard fused silica at temperatures up to 405 °C. The extracted values of hardness and Young's modulus are validated against independent experimental data from conventional mechanical tests, and accuracy comparable to that obtained in standard room-temperature nanoindentation is demonstrated. In situ contact-mode images of the surface at temperature are also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bhushan, B.: Nanomechanical properties of solid surfaces and thin films, in Handbook of Micro/Nano Tribology, edited by Bhushan, B. (CRC Press, Boca Raton, FL, 1999), p. 433.Google Scholar
2.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
3.Venkatesh, T.A., Van Vliet, K.J., Giannakopoulos, A.E., Suresh, S.: Determination of elasto-plastic properties by instrumented sharp indentation: Guidelines for property extraction. Scripta Mater. 42, 833 (2000).CrossRefGoogle Scholar
4.Saha, R., Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).CrossRefGoogle Scholar
5.Fischer-Cripps, A.C.: Nanoindentation (Springer, New York, 2002).CrossRefGoogle Scholar
6.Feng, G., Ngan, A.H.W.: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).CrossRefGoogle Scholar
7.Suresh, S., Nieh, T.G., Choi, B.W.: Nano-indentation of copper thin films on silicon substrates. Scripta Mater. 41, 951 (1999).CrossRefGoogle Scholar
8.Tymiak, N.I., Kramer, D.E., Bahr, D.F., Wyrobek, J.T., Gerberich, W.W.: Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1021 (2001).CrossRefGoogle Scholar
9.Choi, Y., Suresh, S.: Nanoindentation of patterned metal lines on a Si substrate. Scripta Mater. 48, 249 (2003).CrossRefGoogle Scholar
10.Atkins, A.G., Silverio, A., Tabor, D.: Indentation hardness and the creep of solids. J. Inst. Met. 94, 369 (1966).Google Scholar
11.Mulhearn, T.O., Tabor, D.: Creep and hardness of metals: A physical study. J. Inst. Met. 89, 7 (1960).Google Scholar
12.Kutty, T.R.G., Ganguly, C., Sastry, D.H.: Development of creep curves from hot indentation hardness data. Scripta Mater. 34, 1833 (1996).CrossRefGoogle Scholar
13.Li, W.B., Henshall, J.L., Hooper, R.M., Easterling, K.E.: The mechanisms of indentation creep. Acta Metall. Mater. 39, 3099 (1991).CrossRefGoogle Scholar
14.Sargent, P.M., Ashby, M.F.: Indentation creep. Mater. Sci. Technol. 8, 594 (1992).Google Scholar
15.Farber, B.Y., Yoon, S.Y., Lagerlof, K.P.D., Heuer, A.H.: Microplasticity during high-temperature indentation and the Peierls potential in sapphire (α–Al2O3) single-crystals. Phys. Status Solidi A 137, 485 (1993).CrossRefGoogle Scholar
16.Farber, B.Y., Orlov, V.I., Heuer, A.H.: Energy dissipation during high-temperature displacement-sensitive indentation in cubic zirconia single crystals. Phys. Status Solidi A166, 115 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
17.Farber, B.Y., Orlov, V.I., Nykitenko, V.I., Heuer, A.H.: Mechanisms of energy dissipation during displacement-sensitive indentation in Ge single crystals at elevated temperatures. Philos. Mag. A78, 671 (1998).CrossRefGoogle Scholar
18.Lucas, B.N., Oliver, W.C.: Time dependent indentation testing at non-ambient temperatures utilizing the high temperature mechanical properties microprobe, in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356 Pittsburgh, PA, 1995), p. 137.Google Scholar
19.Lucas, B.N., Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. 30A, 601 (1999).CrossRefGoogle Scholar
20.Smith, J.F., Zheng, S.: High temperature nanoscale mechanical property measurements. Surf. Eng. 16, 143 (2000).CrossRefGoogle Scholar
21.Beake, B.D., Smith, J.F.: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A82, 2179 (2002).CrossRefGoogle Scholar
22.Beake, B.D., Goodes, S.R., Smith, J.F.: Nanoscale materials testing under industrially relevant conditions: High-temperature nanoindentation testing. Z. Metallkde. 94, 798 (2003).CrossRefGoogle Scholar
23.Volinsky, A.A., Moody, N.R., Gerberich, W.W.: Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J. Mater. Res. 19, 2650 (2004).CrossRefGoogle Scholar
24.Bahr, D.F., Wilson, D.E., Crowson, D.A.: Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269 (1999).CrossRefGoogle Scholar
25.Kramer, D.E., Yoder, K.B., Gerberich, W.W.: Surface constrained plasticity: Oxide rupture and the yield point process. Philos. Mag. A81, 2033 (2001).CrossRefGoogle Scholar
26.Lund, A.C., Hodge, A.M., Schuh, C.A.: Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 1362 (2004).CrossRefGoogle Scholar
27.Schuh, C.A., Mason, J.K., Lund, A.C.: Quantitative insight into dislocation nucleation from high temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).CrossRefGoogle ScholarPubMed
28.Schuh, C.A., Lund, A.C., Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
29.Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids (Clarendon Press, Oxford, UK, 1959).Google Scholar
30.Graebner, J.E., Jin, S., Kammlott, G.W., Herb, J.A., Gardinier, C.F.: Large anisotropic thermal-conductivity in synthetic diamond films. Nature 359, 401 (1992).CrossRefGoogle Scholar
31.Technical data sheet, Macor, Corning, Inc., Corning, NY.Google Scholar
32.Thurn, J., Cook, R.F.: Simplified area function for sharp indenter tips in depth-sensing indentation. J. Mater. Res. 17, 1143 (2002).CrossRefGoogle Scholar
33.Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
34.Clyne, T.W., Withers, P.J.: An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, UK, 1993).CrossRefGoogle Scholar
35.Bushby, A.J., Dunstan, D.J.: Plasticity size effects in nanoindentation. J. Mater. Res. 19, 137 (2004).CrossRefGoogle Scholar
36.Suganuma, M., Swain, M.V.: Simple method and critical comparison of frame compliance and indenter area function for nanoindentation. J. Mater. Res. 19, 3490 (2004).CrossRefGoogle Scholar
37.Herrmann, K., Jennett, N.M., Kuypers, S., McEntegaart, I., Ingelbrecht, C., Hangen, U., Chudoba, T., Pohlenz, F., Menelao, F.: Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments. Z. Metallkde. 94, 802 (2003).CrossRefGoogle Scholar
38.Handbook of Glass Data, edited by Mazurin, O.V., Streltsina, M.V., and Shvaiko-Shvaikovskaya, T.P. (Elsevier, Amsterdam, The Netherlands, 1983).Google Scholar
39.Shinkai, N., Bradt, R.C., Rindone, G.E.: Fracture-toughness of fused SiO2 and float glass at elevated-temperatures. J. Am. Ceram. Soc. 64, 426 (1981).CrossRefGoogle Scholar
40.Marx, J.W., Sivertsen, J.M.: Temperature dependence of the elastic moduli and internal friction of silica and glass. J. Appl. Phys. 24, 81 (1953).CrossRefGoogle Scholar
41.Spinner, S., Cleek, G.W.: Temperature dependence of Young’s modulus of vitreous germania and silica. J. Appl. Phys. 31, 1407 (1960).CrossRefGoogle Scholar
42.Bucaro, J.A., Dardy, H.D.: High-temperature Brillouin scattering in fused quartz. J. Appl. Phys. 45, 5324 (1974).CrossRefGoogle Scholar
43.Szuecs, F., Werner, M., Sussmann, R.S., Pickles, C.S.J., Fecht, H.J.: Temperature dependence of Young’s modulus and degradation of chemical vapor deposited diamond. J. Appl. Phys. 86, 6010 (1999).CrossRefGoogle Scholar
44.Pierson, H.O.: Handbook of Carbon, Graphite, Diamond, and Fullerenes (Noyes Publications, Park Ridge, NJ, 1993).Google Scholar
45.Fujiwara, M., Otsuka, M.: Indentation creep of beta–Sn and Sn–Pb eutectic alloy. Mater. Sci. Eng. 319, 929 (2001).CrossRefGoogle Scholar
46.Takagi, H., Dao, M., Fujiwara, M., Otsuka, M.: Experimental and computational creep characterization of Al–Mg solid-solution alloy through instrumented indentation. Philos. Mag. 83, 3959 (2003).CrossRefGoogle Scholar
47.Watanabe, M., Mercer, C., Levi, C.G., Evans, A.G.: A probe for the high temperature deformation of thermal barrier oxides. Acta Mater. 52, 1479 (2004).CrossRefGoogle Scholar
48.Takagi, H., Fujiwara, M., Kakehi, K.: Measuring Young’s modulus of Ni-based superalloy single crystals at elevated temperatures through microindentation. Mater. Sci. Eng. A387–89, 348 (2004).CrossRefGoogle Scholar
49.Suzuki, T., Ohmura, T.: Ultra-microindentation of silicon at elevated temperatures. Philos. Mag. A74, 1073 (1996).CrossRefGoogle Scholar
50.Syed-Asif, S.A., Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A76, 1105 (1997).CrossRefGoogle Scholar
51.Wolf, B., Bambauer, K.O., Paufler, P.: On the temperature dependence of the hardness of quasicrystals. Mater. Sci. Eng. 298, 284 (2001).CrossRefGoogle Scholar
52.Kraft, O., Saxa, D., Haag, M., Wanner, A.: The effect of temperature and strain rate on the hardness of Al and Al-based foams as measured by nanoindentation. Z. Metallkde. 92, 1068 (2001).Google Scholar
53.Xia, J., Li, C.X., Dong, H.: Hot-stage nano-characterizations of an iron aluminide. Mater. Sci. Eng. A354, 112 (2003).CrossRefGoogle Scholar
54.Hinz, M., Kleiner, A., Hild, S., Marti, O., Durig, U., Gotsmann, B., Drechsler, U., Albrecht, T.R., Vettiger, P.: Temperature dependent nano indentation of thin polymer films with the scanning force microscope. Eur. Polym. J. 40, 957 (2004).CrossRefGoogle Scholar
55.Nieh, T.G., Iwamoto, C., Ikuhara, Y., Lee, K.W., Chung, Y.W.: Comparative studies of crystallization of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. Intermetallics 12, 1183 (2004).CrossRefGoogle Scholar
56.Ma, X.G., Komvopoulos, K.: In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium-nickel films. J. Mater. Res. 20, 1808 (2005).CrossRefGoogle Scholar
57.Zhang, Y.J., Cheng, Y.T., Grummon, D.S.: Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films. J. Appl. Phys. 033505, 98 (2005).Google Scholar