Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T07:05:01.319Z Has data issue: false hasContentIssue false

Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers

Published online by Cambridge University Press:  31 January 2011

S.P. Wen
Affiliation:
Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
R.L. Zong
Affiliation:
Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
F. Zeng
Affiliation:
Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
Y. Gao
Affiliation:
Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
F. Pan*
Affiliation:
Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: panf@mail.tsinghua.edu.cn
Get access

Abstract

The microstructure, hardness, elastic modulus, and indentation creep of Ag/Cu multilayers prepared by magnetron sputtering were investigated by x-ray diffraction, transmission electron microscopy, and nanoindentation. The hardness values obey the Hall–Petch relationship as the periodicity decreases to 20 nm. For multilayers with periodicity smaller than 20 nm, the Hall–Petch relationship breaks down and the hardness values saturate at about 4.6 GPa; moreover, there are shear bands formed around their indents and strain bursts occurring during the load-holding process of indentation creep. These results imply that there is a transition of the deformation mechanism in the region where the periodicity is equal to 20 nm. This transition of the deformation mechanism can be ascribed to grain-size-dependent competition between the dislocations-mediated plasticity and grain-boundary sliding-mediated plasticity.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Meyers, M.A., Mishra, A.Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 2006CrossRefGoogle Scholar
2Li, H.Q.Ebrahimi, F.: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17, 1969 2005CrossRefGoogle Scholar
3Schuh, C.A., Nieh, T.G.Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 2003CrossRefGoogle Scholar
4Sharma, P.Ganti, S.: On the grain-size-dependent elastic modulus of nanocrystalline materials with and without grain-boundary sliding. J. Mater. Res. 18(8), 1823 2003CrossRefGoogle Scholar
5Shan, Z.W., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M.Mao, S.X.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 2004CrossRefGoogle ScholarPubMed
6Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K.Gleiter, H.: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 2004CrossRefGoogle ScholarPubMed
7Hasnaoui, A., Van Swygenhoven, H.Derlet, P.M.: Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation. Phys. Rev. B: Condens. Matter 66, 184112 2002CrossRefGoogle Scholar
8Chinh, N.Q., Szommer, P., Horita, Z.Langdon, T.G.: Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv. Mater. 18, 34 2006CrossRefGoogle Scholar
9Zhang, G.P., Liu, Y., Wang, W.Tan, J.: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 2006CrossRefGoogle Scholar
10Misra, A., Hirth, J.P.Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 2005CrossRefGoogle Scholar
11Jankowski, A.F.: The effect of strain on the elastic constants of noble metals. J. Phys. F 15, 1279 1985CrossRefGoogle Scholar
12Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
13Raman, V.Berriche, R.: An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique. J. Mater. Res. 7(3), 627 1992CrossRefGoogle Scholar
14Wen, S.P., Zong, R.L., Zeng, F., Gao, Y.Pan, F.: Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Mater. 55, 187 2006CrossRefGoogle Scholar
15Schuller, I.K.: New class of layered materials. Phys. Rev. Lett. 44, 1597 1980CrossRefGoogle Scholar
16Feldmam, C., Ordway, F.Bernstein, J.: Distinguishing thin film and substrate contributions in microindentation hardness measurements. J. Vac. Sci. Technol., A 8(1), 117 1990CrossRefGoogle Scholar
17Saha, R.Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 2002CrossRefGoogle Scholar
18Gao, H., Chiu, C.H.Lee, J.: Elastic contact versus indentation modelling of multi-layered materials. Int. J. Solids Struct. 29, 2471 1992Google Scholar
19Doerner, M.F.Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 1986CrossRefGoogle Scholar
20Akcakaya, E., Famell, G.W.Adler, E.L.: Dynamic approach for finding effective elastic and piezoelectric constants of superlattices. J. Appl. Phys. 68, 1009 1990CrossRefGoogle Scholar
21Streitz, F.H., Cammarata, R.C.Sieradzki, K.: Surface-stress effects on elastic properties: Metallic multilayers. Phys. Rev. B: Condens. Matter 49, 10707 1994CrossRefGoogle ScholarPubMed
22Goodall, R.Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 2006CrossRefGoogle Scholar
23Anderson, P.M., Foecke, T.Hazzledine, P.M.: Dislocation- based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27 1999CrossRefGoogle Scholar
24Chu, X.Barnett, S.A.: Model of superlattice yield stress and hardness enhancements. J. Appl. Phys. 77, 4403 1995CrossRefGoogle Scholar
25Misra, A., Verdier, M., Kung, H., Embury, J.D.Hirth, J.P.: Deformation mechanism maps for polycrystalline metallic multiplayers. Scripta Mater. 41, 973 1999CrossRefGoogle Scholar
26Verdier, M., Huang, H., Spaepen, F., Embury, J.D.Kung, H.: Microstructure, indentation and work hardening of Cu/Ag multilayers. Philos. Mag. 86, 5009 2006CrossRefGoogle Scholar
27McKeown, J., Misra, A., Kung, H., Hoagland, R.G.Nastasi, M.: Microstructures and strength of nanoscale Cu–Ag multilayers. Scripta Mater. 46, 593 2002CrossRefGoogle Scholar
28Siegel, R.W.Fougere, G.E.: Mechanical properties of nanophase metals. Nanostruct. Mater. 6, 205 1995CrossRefGoogle Scholar
29Van Swygenhoven, H.: Polycrystalline materials: Grain boundaries and dislocations. Science 296, 66 2002CrossRefGoogle ScholarPubMed
30Venkataraman, S.K., Kohlstedt, D.L.Gerberich, W.W.: Continuous microindentation of passivating surfaces. J. Mater. Res. 8, 685 1993CrossRefGoogle Scholar
31Gouldstone, A., Koh, H-J., Zeng, K-Y., Giannakopoulos, A.E.Suresh, S.: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 2000CrossRefGoogle Scholar
32Chiu, Y.L.Ngan, A.H.W.: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 2002CrossRefGoogle Scholar
33Schuh, C.A.Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 2003CrossRefGoogle Scholar
34Hahn, H., Mondal, P.Padmanabhan, K.A.: Plastic deformation of nanocrystalline materials. Nanostruct. Mater. 9, 603 1997CrossRefGoogle Scholar
35Sergueeva, A.V., Mara, N.A., Krasilnikov, N.A., Valiev, R.Z.Mukherjee, A.K.: Cooperative grain boundary sliding in nanocrystalline materials. Philos. Mag. 86, 5797 2006CrossRefGoogle Scholar