Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T23:37:00.620Z Has data issue: false hasContentIssue false

Nanoindentation investigations to study solid solution hardening in Ni-based diffusion couples

Published online by Cambridge University Press:  31 January 2011

Oliver Franke
Affiliation:
Department for Materials Science, Institute I, General Materials Properties, University Erlangen-Nürnberg, Erlangen D-91508, Germany
Karsten Durst*
Affiliation:
Department for Materials Science, Institute I, General Materials Properties, University Erlangen-Nürnberg, Erlangen D-91508, Germany
Mathias Göken
Affiliation:
Department for Materials Science, Institute I, General Materials Properties, University Erlangen-Nürnberg, Erlangen D-91508, Germany
*
a) Address all correspondence to this author. e-mail: karsten.durst@ww.uni-erlangen.de
Get access

Abstract

In this work the hardening effect of Ta and Mo in Ni-base alloys was investigated using a combinatorial approach with diffusion couples. Furthermore, the Ni-Fe system was used as a reference system taking advantage of the full miscibility at high temperatures. Ta was chosen, as aside from having a technical relevance in the Ni-base superalloys, it also has a high miscibility in Ni. The main focus of this paper will be solid solution hardening. It will be shown that even though the determination of hardness is subject to varying indentation size effects (ISE) [Durst et al., Acta Mater.55(20), 6825 (2007)], only a few modifications are necessary to describe solid solution strengthening measured by nanoindentations using the Labusch theory [Labusch, Acta Metall.20(7), 917 (1972)]. Moreover, after a careful evaluation of the results, the data can be used to investigate solid solution hardening effects quickly and efficiently with small amounts of material.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.O'Hara, K.S., Walston, W.S., Ross, E.W., and Darolia, R.: U.S. Patent No. 5,482,789 (General Electric Company, Cincinnati, OH, 1996).Google Scholar
2.Kodentsov, A.A., Bastin, G.F., and van Loo, F.J.J.: The diffusion couple technique in phase diagram determination. J. Alloys Compd. 320(2), 207 (2001).CrossRefGoogle Scholar
3.Zhao, J., Jackson, M., Peluso, L., and Brewer, L.: A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM 54(7), 42 (2002).CrossRefGoogle Scholar
4.Zhao, J-C.: A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16(6), 1565 (2001).CrossRefGoogle Scholar
5.Zhao, J-C.: Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships. Prog. Mater. Sci. 51(5), 557 (2006).CrossRefGoogle Scholar
6.Zhao, J-C.: A combinatorial approach for structural materials. Adv. Eng. Mater. 3(3), 143 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
7.Zhao, J-C.: Reliability of the diffusion-multiple approach for phase diagram mapping. J. Mater. Sci. 39(12), 3913 (2004).CrossRefGoogle Scholar
8.Rar, A., Frafjord, J.J., Fowlkes, J.D., Specht, E.D., Rack, P.D., Santella, M.L., Bei, H., George, E.P., and Pharr, G.M.: PVD synthesis and high-throughput property characterization of Ni-Fe-Cr alloy libraries. Meas. Sci. Technol. 16(1), 46 (2005).CrossRefGoogle Scholar
9.Franke, O., Durst, K., and Goken, M.: Microstructure and local mechanical properties of Pt-modified nickel aluminides on nickel-base superalloys after thermo-mechanical fatigue. Mater. Sci. Eng., A 467(1–2), 15 (2007).CrossRefGoogle Scholar
10.Rosbaud, P. and Schmid, E.: Uber Verfestigung von Einkristallen durch Legierung und Kaltreckung. Z. Phys. 32, 197 (1925).CrossRefGoogle Scholar
11.Sachs, G. and Weerts, J.: Zugversuche an Gold-Silberkristallen. Z. Phys. 62, 473 (1930).CrossRefGoogle Scholar
12.Goeler, F. v. and Sachs, G., Zugversuche an Kristallen aus Kupfer und a-Messing. Z. Phys. 55, 581 (1929).CrossRefGoogle Scholar
13.Osswald, E.: Zugversuche an Kupfer-Nickelkristallen. Z. Phys. 83, 55 (1933).CrossRefGoogle Scholar
14.Nabarro, F.R.N.: The mechanical properties of metallic solid solutions. Proc. Phys. Sec. 58, (1946).Google Scholar
15.Mott, N.F. and Nabarro, F.R.N.: An attempt to estimate the degree of precipitation hardening, with a simple model. Proc. Phys. Soc. 52(8), 86 (1940).CrossRefGoogle Scholar
16.Durst, K. and Göken, M.: Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys. Mater. Sci. Eng., A 387–389, 312 (2004).CrossRefGoogle Scholar
17.Göken, M., Kempf, M., and Nix, W.D.: Hardness and modulus of the lamellar microstructure in PST-TiAl studied by nanoindenta-tions and AFM. Acta Mater. 49(5), 903 (2001).CrossRefGoogle Scholar
18.Schöberl, T., Gupta, H.S., and Fratzl, P.: Measurements of mechanical properties in Ni-base superalloys using nanoindentation and atomic force microscopy. Mater. Sci. Eng., A 363(1–2), 211 (2003).CrossRefGoogle Scholar
19.Durst, K., Franke, O., Bohner, A., and Goken, M.: Indentation size effect in Ni-Fe solid solutions. Acta Mater. 55(20), 6825 (2007).CrossRefGoogle Scholar
20.Backes, B., Durst, K., and Göken, M.: Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541 (2006).CrossRefGoogle Scholar
21.Durst, K., Backes, B., and Goken, M.: Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52(11), 1093 (2005).CrossRefGoogle Scholar
22.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998).CrossRefGoogle Scholar
23.Atkins, A.G. and Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13(3), 149 (1965).CrossRefGoogle Scholar
24.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
25.Flor, H., Gudladt, H.J., and Schwink, C.: Plastic deformation of Fe-Ni invar alloys. Acta Metall. 28, 1611 (1980).CrossRefGoogle Scholar
26.Durst, K., Backes, B., Franke, O., and Goken, M.: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54(9), 2547 (2006).CrossRefGoogle Scholar
27.Bahr, D.F. and Vasquez, G.: Effect of solid solution impurities on dislocation nucleation during nanoindentation. J. Mater. Res. 20 (8), 1947 (2005).CrossRefGoogle Scholar
28.Labusch, R.: Statistical theories of solid solution hardening. Acta Metall. 20(7), 917 (1972).CrossRefGoogle Scholar
29.Davies, C.K.L., Sagar, V., and Stevens, R.N.: The effect of the stacking fault energy on the plastic deformation of polycristalline NiCo-alloys. Acta Metall. 21, 1343 (1973).CrossRefGoogle Scholar
30.Akhtar, A. and Teghtsoonian, E.: Plastic deformation of Ni-Cr single crystals. Metall. Trans. 2(10), 2757 (1971).CrossRefGoogle Scholar
31.Reid, C.N.: Deformation Geometry for Materials Scientists (Pergamon Press, Oxford, UK, 1973).Google Scholar
32.Schulze, G.E.R.: Metallphysik (Springer-Verlag, Vienna, 1974).CrossRefGoogle Scholar