Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T17:01:59.707Z Has data issue: false hasContentIssue false

Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures

Published online by Cambridge University Press:  26 July 2012

J. Lou
Affiliation:
Princeton Materials Institute and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
P. Shrotriya
Affiliation:
Princeton Materials Institute and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
T. Buchheit
Affiliation:
Mechanical Reliability and Modeling Department, Sandia National Laboratories, Albuquerque, New Mexico 87185
D. Yang
Affiliation:
Hysitron, Inc., Minneapolis, Minnesota 55439
W. O. Soboyejo
Affiliation:
Princeton Materials Institute and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

This paper presents the results of a nanoindentation study of the effects of strain gradient plasticity on the elastic–plastic deformation of lithographie, galvanoformung, abformung (LIGA) Ni microelectromechanical systems (MEMS) structures plated from sulfamate baths. Both Berkovich and North Star/cube corner indenter tips were used in the study to investigate possible effects of residual indentation depth on the hardness of LIGA Ni MEMS structures between the micro- and nanoscales. A microstructural length scale parameter, , was determined for LIGA nickel films. This is shown to be consistent with a stretch gradient length-scale parameter, ls, of approximately 0.9 μm.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Madou, M., Fundamental of Microfabrication (CRC Press, Boca Raton, FL, 1999).Google Scholar
2.Christensen, T., Buchheit, T., Schmale, D.T., and Bourcier, R.J., in Microelectromechanical Structures for Materials Research, edited by Brown, S., Gilbert, J., Guckel, H., Howe, R., Johnson, G., Krulevitch, P., and Muhlstein, C. (Mater. Res. Soc. Symp. Proc., 518, Warrendale, PA, 1999), pp. 185191.Google Scholar
3.Last, H., Hemker, K.J., and Witt, R., in Materials Science of Microelectromechanical Systems (MEMS) Devices II, edited by Boer, M.P. de, Heyer, A.H., Jacobs, S.J., and Peeters, E. (Mater. Res. Soc. Symp. Proc., 605, Warrendale, PA, 2000), pp. 191196.Google Scholar
4.Xie, Z.L., Pan, D., Last, H., and Hemker, K.J., in Materials Science of Microelectromechanical Systems (MEMS) Devices II, edited by Boer, M.P. de, Heyer, A.H., Jacobs, S.J., and Pecters, E. (Mater. Res. Soc. Symp. Proc., 605, Warrendale, PA, 2000), pp. 197202.Google Scholar
5.Tabor, D., Hardness of Metals (Oxford University Press, Oxford, U.K., 1951).Google Scholar
6.Ma, Q. and Clarke, D.R., J. Mater. Res. 10, 853 (1994).CrossRefGoogle Scholar
7.Dorner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
8.Poole, W.J., Ashby, M.F., and Fleck, N.A., Scr. Mater. 34, 559 (1996).CrossRefGoogle Scholar
9.Begley, M.R. and Hutchinson, J.W., J. Mech. Phys. Solids 46, 2049 (1998).CrossRefGoogle Scholar
10.Nix, W.D. and Gao, H., J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
11.Fleck, N.A. and Hutchinson, J.W., Adv. Appl. Mech. 33, 295 (1997).CrossRefGoogle Scholar
12.Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W., J. Mech. Phys. Solids 47, 1239 (1999).CrossRefGoogle Scholar
13.Huang, Y., Gao, H., Nix, W.D., and Hutchinson, J.W., J. Mech. Phys. Solids 48, 99 (2000).CrossRefGoogle Scholar
14.Shrotriya, P., Allameh, S.M., Lou, J., Buchheit, T., and Soboyejo, W.O., Mech. Mater. J. (2002, in press).Google Scholar
15.Buchheit, T.E., LaVan, D.A., Michael, J.R., Chrinstenson, T.R., Leith, S.D., Metall. Mater. Trans. 33A, 539 (2002).CrossRefGoogle Scholar
16.Gerberich, W.W., Yu, W., Kramer, D., Strojny, A., Bahr, D., Lilleodden, E., and Nelson, J., J. Mater. Res. 13, 1 (1998).CrossRefGoogle Scholar
17.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
18.King, R.B., Int. J. Solids Struct. 23, 1657 (1987).CrossRefGoogle Scholar
19.Hay, J.C., Bolshakov, A., and Pharr, G.M., J. Mater. Res. 14, 2296 (1999).CrossRefGoogle Scholar
20.Cheng, Y-T. and Cheng, C-M., J. Appl. Phys. 84, 1284 (1998).CrossRefGoogle Scholar
21.Dao, M., Chollacoop, N., Vliet, K.J. Van, Venkatesh, T.A., and Suresh, S., Acta Mater. 49, 3899 (2001).CrossRefGoogle Scholar
22.Pharr, G.M., Oliver, W.C., and Brotzen, F.R., J. Mater. Res. 7, 613 (1992).CrossRefGoogle Scholar
23.Sneddon, I.N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
24.Martin, M. and Troyon, M., J. Mater. Res. 17, 2227 (2002).CrossRefGoogle Scholar
25.Malzbender, J., With, G. de, and Toonder, J. den, J. Mater. Res. 15, 1209 (2000).CrossRefGoogle Scholar
26.Cheng, Y-T. and Cheng, C-M., J. Mater. Res. 13, 1059 (1998).CrossRefGoogle Scholar
27.Bolshakov, A. and Pharr, G.M., J. Mater. Res. 13, 1049 (1998).CrossRefGoogle Scholar
28.Cheng, Y-T. and Cheng, C-M., Philos. Mag. Lett. 78, 115 (1998).CrossRefGoogle Scholar
29.McElhaney, K.W., Vlassak, J.J., and Nix, W.D., J. Mater. Res. 13, 1300 (1998).CrossRefGoogle Scholar
30.Zupan, M., Legros, M., Elliott, B.R., and Hemker, K.J., in Proceedings of the TMS Fall Meeting, Advanced Materials for the 21st Century: 1999 Julia R. Wertman Symposium, edited by Chung, Y-W., Dumand, D., Liaw, P., and Olson, G., (Warrendale, PA, 1999), pp. 525536.Google Scholar
31.Stelmashenko, N.A., Walls, M.G., Brown, L.M., and Milman, Y.V., in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by Nastasi, M., Parkin, D.M., and Gleiter, H., NATO ASI Series E 233 (D. Reidel, Dordrecht, The Netherlands, 1993), pp. 602–10.Google Scholar
32.Guzman, M.S. De, Neubauer, G., Flinn, P. and Nix, W.D., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., Sanchez, J.E., Jr., and Borgesen, P. (Mater. Res. Symp. Proc. 308, Pittsburgh, PA, 1993), pp. 613618.Google Scholar
33.Lou, J., Allameh, S., Buchheit, T., and Soboyejo, W.O., Mechanical Properties of MEMS Structures (Kluwer, Assinipi Lake, MA, 2002).Google Scholar
34.Stölken, J.S. and Evans, A.G., Acta Mater. 46, 51095115 (1998).CrossRefGoogle Scholar