Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T14:14:44.331Z Has data issue: false hasContentIssue false

A nanoindentation technique for functional evaluation of cartilage repair tissue

Published online by Cambridge University Press:  03 March 2011

Donna M. Ebenstein
Affiliation:
Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California 94143
Alfred Kuo
Affiliation:
Department of Orthopaedic Surgery, University of California at Davis, Sacramento, California 95817
Juan J. Rodrigo
Affiliation:
Department of Orthopaedic Surgery, University of California at Davis, Sacramento, California 95817
A. Hari Reddi
Affiliation:
Department of Orthopaedic Surgery, University of California at Davis, Sacramento, California 95817
Michael Ries
Affiliation:
Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California 94143
Lisa Pruitt
Affiliation:
Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720
Get access

Abstract

Cartilage repair is an ongoing challenge in orthopaedic research. Both biological and mechanical properties are needed for full functional characterization of a tissue replacement. However, assessment of cartilage repair tissue has relied primarily on histological markers because mechanical properties are difficult to measure in small tissue regions. Nanoindentation is a technique that is specialized for measuring local mechanical properties in small specimens. In this study, nanoindentation was used to measure the mechanical properties of cartilage repair tissue following microfracture treatment of chondral defects in three rabbit knees. The mechanical properties were then correlated with histology findings from the same tissue samples. Nanoindentation provided complementary information to histology. In particular, the nanoindentation results showed that the mechanical properties of the repair tissue were inferior to the control tissue properties, even though some tissue regions were histologically similar to the control tissue.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hunziker, E.B., Osteoarthritis Cartilage 10 432 (2002).CrossRefGoogle Scholar
2.Lee, C.R., Grodzinsky, A.J., Hsu, H.P. and Spector, M., J. Orthop. Res. 21 272 (2003).CrossRefGoogle Scholar
3.Mainil-Varlet, P., Aigner, T., Brittberg, M., Bullough, P., Hollander, A., Hunziker, E., Kandel, R., Nehrer, S., Pritzker, K., Roberts, S. and Stauffer, E., J. Bone Joint Surg. Am. 85–A (Suppl 2) 45 (2003).CrossRefGoogle Scholar
4.Pineda, S., Pollack, A., Stevenson, S., Goldberg, V. and Caplan, A., Acta Anat. (Basel) 143 335 (1992).CrossRefGoogle Scholar
5.O’Driscoll, S.W., Keeley, F.W. and Salter, R.B., J. Bone Joint Surg. Am. 70 595 (1988).CrossRefGoogle Scholar
6.Moojen, D.J., Saris, D.B., Auw Yang, K.G., Dhert, W.J. and Verbout, A.J., Tissue Eng 8 627 (2002).CrossRefGoogle Scholar
7.Hasler, E.M., Herzog, W., Wu, J.Z., Muller, W. and Wyss, U., Crit. Rev. Biomed. Eng. 27 415 (1999).Google Scholar
8.Athanasiou, K.A., Shah, A.R., Hernandez, R.J. and LeBaron, R.G., Clin. Sports Med. 20 223 (2001).CrossRefGoogle Scholar
9.Hale, J.E., Rudert, M.J. and Brown, T.D., J. Biomech. 26 1319 (1993).CrossRefGoogle Scholar
10.Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E. and Goldstein, S.A., Technol. Health Care 6 429 (1998).CrossRefGoogle Scholar
11.Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E. and Goldstein, S.A., Journal of Biomechanics 32 1005 (1999).CrossRefGoogle Scholar
12.Rho, J.Y.Roy, M.E. 2ndTsui, T.Y. and Pharr, G.M., J. Biomed. Mater. Res. 45 48 (1999).3.0.CO;2-5>CrossRefGoogle Scholar
13.Rho, J.Y., Zioupos, P., Currey, J.D. and Pharr, G.M., Bone 25 295 (1999).CrossRefGoogle Scholar
14.Marshall, G.W. Jr.Balooch, M., Gallagher, R.R., Gansky, S.A. and Marshall, S.J., J. Biomed. Mater. Res. 54 87 (2001).3.0.CO;2-Z>CrossRefGoogle Scholar
15.Fong, H., Sarikaya, M., White, S.N. and Snead, M.L., Mater. Sci. Eng. C: Biomimetic and Supramolecular Systems 7 119 (2000).CrossRefGoogle Scholar
16.Ebenstein, D.M., Ph.D. Thesis, University of California at Berkeley, Berkeley, CA (2002).Google Scholar
17.Briscoe, B.J., Fiori, L. and Pelillo, E., J. Phys. D: Appl. Phys. 31 2395 (1998).CrossRefGoogle Scholar
18.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
19.Suh, J.K. and Spilker, R.L., J. Biomech. Eng. 116 1 (1994).CrossRefGoogle Scholar
20.Frisbie, D.D., Oxford, J.T., Southwood, L., Trotter, G.W., Rodkey, W.G., Steadman, J.R., Goodnight, J.L. and McIlwraith, C.W., Clin. Orthop. 407 215 (2003).CrossRefGoogle Scholar
21.Steadman, J.R., Rodkey, W.G. and Rodrigo, J.J., Clin. Orthop. S362 (2001).Google Scholar
22.Grgic, M., Jelic, M., Basic, V., Basic, N., Pecina, M. and Vukicevic, S., Acta Med. Croatica 51 23 (1997).Google Scholar
23.Lietman, S.A., Yanagishita, M., Sampath, T.K. and Reddi, A.H., J. Bone Joint Surg. Am. 79 1132 (1997).CrossRefGoogle Scholar
24.Rodrigo, J.J. (unpublished).Google Scholar
25.Shapiro, F., Koide, S. and Glimcher, M.J., J. Bone Joint Surg. Am. 75 532 (1993).CrossRefGoogle Scholar
26.Mow, V.C. and Guo, X.E., Annu. Rev. Biomed. Eng. 4 175 (2002).CrossRefGoogle Scholar
27.Smith, C.L. and Mansour, J.M., J. Biomech. 33 1507 (2000).CrossRefGoogle Scholar
28.Giri, M., Bousfield, D. and Unertl, W.N., Tribol. Lett. 9 33 (2000).CrossRefGoogle Scholar
29.Athanasiou, K.A., Fischer, R., Niederauer, G.G. and Puhl, W., J. Orthop. Res. 13 483 (1995).CrossRefGoogle Scholar
30.Appleyard, R.C., Swain, M.V., Khanna, S. and Murrell, G.A., Phys. Med. Biol. 46 541 (2001).CrossRefGoogle Scholar
31.Appleyard, R.C., Burkhardt, D., Ghosh, P., Read, R., Cake, M., Swain, M.V. and Murrell, G.A., Osteoarthritis Cartilage 11 65 (2003).CrossRefGoogle Scholar