Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T08:47:33.220Z Has data issue: false hasContentIssue false

Nanoscale repetitive impact testing of polymer films

Published online by Cambridge University Press:  03 March 2011

Ben D. Beake*
Affiliation:
Micro Materials Ltd., Wrexham Technology Park, Wrexham, LL13 7YP, United Kingdom
Stephen R. Goodes
Affiliation:
Micro Materials Ltd., Wrexham Technology Park, Wrexham, LL13 7YP, United Kingdom
James F. Smith
Affiliation:
Micro Materials Ltd., Wrexham Technology Park, Wrexham, LL13 7YP, United Kingdom
Fengge Gao
Affiliation:
Polymer Engineering Centre, School of Engineering, Nottingham Trent University, Nottingham, NG1 4BU, United Kingdom
*
a)Address all correspondence to this author. e-mail: ben@micromaterials.co.uk
Get access

Abstract

The deformation of polymer films under repetitive contact at high strain rates was investigated using nanoscale impact testing. Four systems were studied: (i) rubber-modified acrylonitrile-butadiene-styrene (ABS) (0–25 wt% rubber), (ii) uniaxially and biaxially drawn poly(ethylene terephthalate) film; (iii) poly(ethylene oxide)–clay nanocomposites, and (iv) nylon 6–organoclay nanocomposites. The initial results suggest that the technique has much potential in evaluating the fatigue behavior of thinner polymer films and coatings that are unsuitable for conventional methods designed for bulk samples. The extent of impact-induced deformation may be used as a measure of ductility because ductile failures are associated with significant plastic deformation before failure whereas brittle failures usually involve little plastic deformation. The nano-impact technique provides valuable highly localized information about deformation under high strain rate, which is complementary to low strain rate tests such as nanoindentation and nano-scratch. The technique has been shown to be sensitive to nano-/microstructural variations in ABS–rubber film when Berkovich indenters and low impact forces were used. The impact behavior of the nanocomposites is only significantly worse than that of the virgin polymers at the highest clay loading studied (15 wt%). This could be a factor when assessing the suitability of novel nanocomposite materials for applications where toughness is important. On ABS film, there is only an approximate correlation between the plastic work function determined from nanoindentation and the rubber loading in the film while the correlation between the rubber loading and nano-impact data is clear, suggesting that the dynamic test is a more useful predictor of thin polymer film toughness than the slow-loading quasi-static indentation test.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Perkins, W.G.Poly. Eng. Sci. 39 1999 2445.CrossRefGoogle Scholar
2.Keddie, J.L., Jones, R.A.L. and Cory, R.A., Europhys. Lett. 27 59 (1994).CrossRefGoogle Scholar
3.Van Melick, H., Van Dijken, A., Den Toonder, J.M.J., Govaert, L. and Meijer, H., Philos. Mag. A 82 2093 (2002).CrossRefGoogle Scholar
4.Dong, H. and Bell, T., Surf. Coat. Technol. 111 29 (1999).CrossRefGoogle Scholar
5.Beake, B.D., Chen, S., Hull, J.B. and Gao, F., J. Nanoscience and Nanotechnology 2 73 (2002).Google Scholar
6.Briscoe, B.J., Fiori, L. and Pelillo, E., J. Phys. D 31 2395 (1998).CrossRefGoogle Scholar
7.VanLandingham, M.R., Villarrubia, J.S., Guthrie, W.F. and Meyers, G.F. in Advances in Scanning Probe Microscopy of Polymers, edited by Tsukruk, V.V. and Spencer, N.D., Macromol. Symp. 167 (Wiley-VCH, Weinheim, Germany, 2001), pp. 1540.Google Scholar
8.Stronjy, A., Xia, X., Tsou, A. and Gerberich, W.W., J. Adhesion Sci. Technol. 12 1299 (1998).Google Scholar
9.Flores, A. and Baltá Calleja, F.J., Philos. Mag. A 78, 1283 (1998).CrossRefGoogle Scholar
10.Briscoe, B.J., Sebastian, K.S. and Sinha, S.K., Philos. Mag. A 74 1159 (1996).CrossRefGoogle Scholar
11.Ion, R.H., Pollock, H.M. and Roques-Carmes, C., J. Mater. Sci. 25 1444 (1990).CrossRefGoogle Scholar
12.Dwyer-Joyce, R.S., Ushijima, Y., Murakami, Y. and Shibuta, R., Tribol. Int. 31 525 (1998).CrossRefGoogle Scholar
13.Benítez, F., Martínez, E., Galán, M., Serrat, J. and Esteve, J., Surf. Coat. Technol. 215 383 (2000).Google Scholar
14.Jardret, V., Zahouani, H., Loubet, J.L. and Mathia, T.G., Wear 218 8 (1998).CrossRefGoogle Scholar
15.Raghavan, D., Gu, X., Nguuyen, T., VanLandingham, M. and Karim, A., Macromolecules 33 2573 (2000).CrossRefGoogle Scholar
16.Chateauminois, A. and Briscoe, B.J., Surf. Coat. Technol. 163–164 435 (2003).CrossRefGoogle Scholar
17.Shen, W.C., Jiang, B. and Jones, F.N., J. Coatings Technol. 72 89 (2000).CrossRefGoogle Scholar
18.Krupicka, A., Johansson, M., Hult, A. and Favaro, G., J. Coatings Technol. 75 19 (2003).CrossRefGoogle Scholar
19.Gauthier, C. and Schirrer, R., J. Mater.Sci. 35 2121 (2000).CrossRefGoogle Scholar
20.Bucaille, J.L., Felder, E. and Hochstetter, G., Wear 249 422 (2001).Google Scholar
21.Gauthier, C., Lafaye, S. and Schirrer, R., Tribology Int. 34 469 (2001).Google Scholar
22.Jardret, V., Lucas, B.N. and Oliver, W., J. Coatings Technol. 72 79 (2000).Google Scholar
23.Barbeau, P., Magny, B., Roche, S. and Loubet, J-L., Euro. Coat. J. 10 406 (2002).Google Scholar
24.Krupicka, A., Johansson, M. and Hult, A., Prog. Org. Coatings 46 32 (2003).CrossRefGoogle Scholar
25.Adams, M.J., Gorman, D.M., Johnson, S.A. and Briscoe, B.J., Philos. Mag. A 82 2121 (2002).CrossRefGoogle Scholar
26.Courter, J.L. and Kamenetzky, E.A., Euro. Coat. J. 7 24 (1999).Google Scholar
27.VanLandingham, M.R. and Giraud, M. (2003, in press).Google Scholar
28.Oyen-Tiesma, M., Toivola, Y.A. and Cook, R.F. in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q1.5.1.Google Scholar
29.Strojny, A. and Gerberich, W.W. in Fundamentals of Nanoinden- tation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N. and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 205.Google Scholar
30.Beake, B.D.Ibanez, M.J.Smith, J.F.Proc. ICMCTF 2001, San Diego, and Thin Solid Films, 398–399 (2001) 438.Google Scholar
31.Beake, B.D., Goodes, S.R. and Smith, J.F., Surf. Eng. 17 187 (2001).CrossRefGoogle Scholar
32.Beake, B.D.Goodes, S.R.Smith, J.F.Zhang, A. and J.E, , Science in China (Series A) 44(suppl), 418 (2001).Google Scholar
33.Beake, B.DGoodes, S.R.Smith, J.F.Madani, R.Rego, C.A.Cherry, R.I. and Wagner, T., Diam. Relat. Mater. 11, 1606 (2002).CrossRefGoogle Scholar
34.Gao, F., Chen, S. and Hull, J.B., J. Mater. Sci. Lett. 20 1807 (2001).Google Scholar
35.Pollock, H.M. in Friction, Lubrication, and Wear Technology, ASM Handbook, Vol. 18, edited by Blau, P.J. (ASM International, Materials Park, OH, 1992), p. 419.Google Scholar
36.Baltá Calleja, F.J andFakirov, S., Microhardness of Polymers (Cambridge University Press, Cambridge, U.K., 2000).Google Scholar
37.Fischer-Cripps, A.C., Nanoindentation (Springer-Verlag, New York, 2002).CrossRefGoogle Scholar
38.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
39.Beake, B.D. and Leggett, G.J., Polymer 43 319 (2002).CrossRefGoogle Scholar
40.Cheng, Y-T., Li, Z. and Cheng, C-M., Philos. Mag. A 82 1821 (2002).Google Scholar
41.Berthoud, P., G’Sell, C. and Hiver, J-M., J. Phys. D 32 2923 (1999).Google Scholar
42.den Toonder, J.M.J., van Dijken, A.R., Gonda, V.Beijer, J.G.J.Zhang, K. and Ernst, L.Proc. ECTC(2003, in press).Google Scholar
43.Chudoba, T. and Richter, F., Surf. Coat. Technol. 148 191 (2001).CrossRefGoogle Scholar
44.Mills, P.J. in Structure and Properties of Oriented Polymers, 2nd edition, edited by Ward, I.M., (Chapman & Hall, London, U.K., 1997), p. 423.Google Scholar
45.Beake, B.D., Leggett, G.J. and Shipway, P.H., Polymer 42 7025 (2001).Google Scholar
46.Beake, B.D., Shipway, P.H. and Leggett, G.J.Wear (2003, in press).Google Scholar
47.Strawhecker, K.E. and Manias, E., Chem. Mater. 12 2943 (2000).CrossRefGoogle Scholar
48.Schmidt, D., Shah, D. and Giannelis, E.P., Curr. Opin. Solid State Mater. Sci. 6 205 (2002).CrossRefGoogle Scholar
49.Spiegel, M.R.Theory and Problems of Probability and Statistics (McGraw-Hill, New York, 1992).Google Scholar