Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T19:57:22.187Z Has data issue: false hasContentIssue false

Nanosphere lithography fabricated plasmonic materials and their applications

Published online by Cambridge University Press:  01 May 2006

Xiaoyu Zhang
Affiliation:
Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
Chanda Ranjit Yonzon
Affiliation:
Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
Richard P. Van Duyne*
Affiliation:
Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
*
b) Address all correspondence to this author. e-mail: vanduyne@chem.northwestern.edu This paper was selected as the Outstanding Meeting Paper for the 2005 MRS Spring Meeting Symposium R Proceedings, Vol. 876E.
Get access

Abstract

Nanosphere lithography fabricated nanostructures have highly tunable localized surface plasmons, which have been used for important sensing and spectroscopy applications. In this work, the authors focus on biological applications and technologies that utilize two types of related plasmonic phenomena: localized surface plasmon resonance (LSPR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). Two applications of these plasmonic materials are presented: (i) the development of an ultrasensitive nanoscale optical biosensor based on LSPR wavelength-shift spectroscopy and (ii) the SERS detection of an anthrax biomarker.

Type
Outstanding Meeting Papers
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ji, J., Schanzle, J.A., Tabacco, M.B.: Real-time detection of bacterial contamination in dynamic aqueous environments using optical sensors. Anal. Chem. 1411, 76 (2004).Google Scholar
2.Ligler, F.S., Taitt, C.R., Shriver-Lake, L.C., Sapsford, K.E., Shubin, Y., Golden, J.P.: Array biosensor for detection of toxins. Anal. Bioanal. Chem. 469, 377 (2003).Google Scholar
3.Yonzon, C.R., Haynes, C.L., Zhang, X., Walsh, J.T., Van Duyne, R.P.: A glucose biosensor based on surface-enhanced raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal. Chem. 78, 76 (2004).Google Scholar
4.Stuart, D.A., Yonzon, C.R., Zhang, X., Lyandres, O., Shah, N.C., Glucksberg, M.R., Walsh, J.T., Van Duyne, R.P.: Glucose sensing using near infrared surface-enhanced raman spectroscopy: Gold surfaces, 10-day stability, and improved accuracy. Anal. Chem. 4013, 77 (2005).Google Scholar
5.Yonzon, C.R., Jeoung, E., Zou, S., Schatz, G.C., Mrksich, M., Van Duyne, R.P.: A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J. Am. Chem. Soc. 12669, 126 (2004).Google Scholar
6.Ho, H., Leclerc, M.: Optical sensors based on hybrid aptamer/conjugated polymer complexes. J. Am. Chem. Soc. 1384, 126 (2004).Google Scholar
7.Wiskur, S.L., Anslyn, E.V.: Using a synthetic receptor to create an optical-sensing ensemble for a class of analytes: A colorimetric assay for the aging of scotch. J. Am. Chem. Soc. 10109, 123 (2001).Google Scholar
8.Zhang, X., Young, M.A., Lyandres, O., Van Duyne, R.P.: Rapid detection of an anthrax biomarker by surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 4484, 127 (2005).Google Scholar
9.Reather, H.Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, Germany, 1988).CrossRefGoogle Scholar
10.Jensen, T.R., Schatz, G.C., Van Duyne, R.P.: Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by UV-vis extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. B 2394, 103 (1999).Google Scholar
11.McFarland, A.D., Van Duyne, R.P.: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 1057, 3 (2003).Google Scholar
12.Jensen, T.R., Malinsky, M.D., Haynes, C.L., Van Duyne, R.P.: Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 10549, 104 (2000).Google Scholar
13.Yguerabide, J., Yguerabide, E.E.: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—II. Experimental characterization. Anal. Biochem. 157, 262 (1998).Google Scholar
14.Schatz, G.C., Van Duyne, R.P. Electromagnetic mechanism of surface-enhanced spectroscopy, in Handbook of Vibrational Spectroscopy edited by Chalmers, J.M. and Griffiths, P.R. (Wiley, New York, 2002), pp. 759774.Google Scholar
15.Siemes, C., Bruckbauer, A., Goussev, A., Otto, A., Sinther, M., Pucci, A.: SERS-active sites on various copper substrates. J Raman Spectrosc. 231, 32 (2001).Google Scholar
16.Graff, M., Bukowska, J., Zawada, K.: Surface enhanced raman scattering (SERS) of 1-hydroxybenzotriazole adsorbed on a copper electrode surface. J. Electroanal. Chem. 297, 567 (2004).Google Scholar
17.Haynes, C.L., Van Duyne, R.P.: Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 5599, 105 (2001).Google Scholar
18.Houseman, B.T., Gawalt, E.S., Mrksich, M.: Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 1522, 19 (2003).Google Scholar
19.Bailey, G.F., Karp, S., Sacks, L.E.: Ultraviolet-absorption spectra of dry bacterial spores. J. Bacteriol. 984, 89 (1965).Google Scholar
20. Deltanu company home page, www.deltanu.com (2005).Google Scholar
21.Liedberg, B., Nylander, C., Lundstorm, I.: Surface plasmon resonance for gas detection and biosensing. Sens. Actuators B 229, 4 (1983).Google Scholar
22.Raschke, G., Kowarik, S., Franzl, T., Sönnichsen, C., Klar, T.A., Feldmann, J., Nichtl, A., Kürzinger, K.: Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 935, 3 (2003).Google Scholar
23.Riboh, J.C., Haes, A.J., McFarland, A.D., Yonzon, C.R., Van Duyne, R.P.: A nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J. Phys. Chem. B 1772, 107 (2003).Google Scholar
24.Haes, A.J., Van Duyne, R.P.: A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 10596, 124 (2002).Google Scholar
25.Haes, A.J., Zou, S., Schatz, G.C., Van Duyne, R.P.: A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 109, 108 (2004).Google Scholar
26.Malinsky, M.D., Kelly, K.L., Schatz, G.C., Van Duyne, R.P.: Chain-length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 1471, 123 (2001).Google Scholar
27.Jung, L.S., Campbell, C.T., Chinowsky, T.M., Mar, M.N., Yee, S.S.: Quantitative interpretaion of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 5636, 14 (1998).Google Scholar
28.Palegrosdemange, C., Simon, E.S., Prime, K.L., Whitesides, G.M.: Formation of self-assembled monolayers by chemisorption of derivatives of oligo(ethylene glycol) of structure HS(CH2)11(Och2CH2) meta-OH on gold. J. Am. Chem. Soc. 12, 113 (1991).Google Scholar
29.Hardman, K.D., Ainsworth, C.F.: Structure of Concanavalin A at 2.4-ang resolution. Biochemistry 4910, 11 (1972).Google Scholar
30.Smith, E.A., Corn, R.M.: Surface plasmon resonance imaging as a tool to monitor biomolecular interaction in an array based format. Appl. Spectrosc. 320A, 57 (2003).Google Scholar
31.Gupta, D., Cho, M., Cummings, R.D., Brewer, C.F.: Thermodynamics of carbohydrate binding to galectin-1 from Chinese hamster ovary cells and two mutants. A comparison with four galactose-specific plant lectins. Biochemistry. 15236, 35 (1996).Google Scholar
32.McFarland, A.D., Young, M.A., Dieringer, J.A., Van Duyne, R.P.: Wavelength-scanned surface-enhanced raman excitation spectroscopy. J. Phys. Chem. B 109, 11279 (2005).CrossRefGoogle ScholarPubMed
33.Haynes, C.L., Van Duyne, R.P.: Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 7426, 107 (2003).Google Scholar
34.Nie, S., Emory, S.R.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1102, 275 (1997).Google Scholar
35.Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1667, 78 (1997).Google Scholar
36.Stacy, A.M., Van Duyne, R.P.: Surface enhanced Raman and resonance Raman-spectroscopy in a non-aqueous electrochemical environment—tris(2,2′-bipyridine)ruthenium(II) adsorbed on silver from acetonitrile. Chem. Phys. Lett. 365, 102 (1983).Google Scholar
37.Litorja, M., Haynes, C.L., Haes, A.J., Jensen, T.R., Van Duyne, R.P.: Surface-enhanced Raman scattering detected temperature programmed desorption: Optical properties, nanostructure, and stability of silver films over SiO2 nanospheres. J. Phys. Chem. B 6907, 105 (2001).Google Scholar
38.Zhang, X., Yonzon, C.R., Van Duyne, R.P.: An electrochemical surface-enhanced raman spectroscopy approach to anthrax detection. Proc. SPIE 82, 5221 (2003).Google Scholar
39.Goodacre, R., Shann, B., Gilbert, R.J., Timmins, E.M., McGovern, A.C., Alsberg, B.K., Kell, D.B., Logan, N.A.: Detection of the dipicolinic acid biomarker in bacillus spores using curie-point pyrolysis mass spectrometry and fourier transform infrared spectroscopy. Anal. Chem. 119, 72 (2000).Google Scholar