Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:08:53.907Z Has data issue: false hasContentIssue false

Nanostructure development in photodeposited, titania-based thin films

Published online by Cambridge University Press:  31 January 2011

J. David Musgraves
Affiliation:
Arizona Materials Laboratory, Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85712
B.G. Potter Jr.*
Affiliation:
Arizona Materials Laboratory, Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85712
Timothy J. Boyle
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico 87105
*
a) Address all correspondence to this author. e-mail: bgpotter@mse.arizona.edu
Get access

Abstract

Ultraviolet irradiation (λ = 248 nm) was used to photocatalyze a solution of the heteroleptic titanium alkoxide (OPy)2Ti(TAP)2 [where OPy = pyridine carbinoxide and TAP = 2,4,6 tris(dimethylamino)phenoxide], leading to the deposition of a titania-based thin film only in the exposed region. The effect of water addition to the (OPy)2Ti(TAP)2 pyridine solution on the properties of the final photodeposited film structure was examined by using vibrational spectroscopy and electron microscopy. Under consistent optical exposure conditions, the amount of water added altered the nanoscale porosity of the final material produced. Films deposited from a solution with a 1:1 H2O/Ti content exhibited surface pores ∼100 nm in diameter, whereas a 4:1 ratio yielded 10-nm pores, and material produced from a 8:1 solution appeared fully condensed. In addition, the effect of postdeposition thermal treatments on the nanostructure and chemistry of the photodeposited films was examined.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chaker, J.A., Santilli, C.V., Pulcinelli, S.H., Dahmouche, K., Briois, V., and Judeinstein, P.: Multi-scale structural description of siloxane-PPO hybrid ionic conductors doped by sodium salts. J. Mater. Chem. 17, 744 (2007).CrossRefGoogle Scholar
2.Gracheva, M.E., Xiong, A., Aksimentiev, A., Schulten, K., Timp, G., and Leburton, J.P.: Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor. Nanotechnology 17, 622 (2006).CrossRefGoogle Scholar
3.Grosso, D., Illia, G.J.D.A.S., Crepaldi, E.L., Charleux, B., and Sanchez, C.: Nanocrystalline transition-metal oxide spheres with controlled multi-scale porosity. Adv. Funct. Mater. 13, 37 (2003).CrossRefGoogle Scholar
4.Koyama, M., Suzuki, A., Sahnoun, R., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Kubo, M., Carpio, C.A. del, and Miyamoto, A.: Development of porous structure simulator for multi-scale simulation of irregular porous catalysts. Appl. Surf. Sci. 254, 7774 (2008).CrossRefGoogle Scholar
5.Gao, X., Yan, X., Yao, X., Xu, L., Zhang, K., Zhang, J., Yang, B., and Jiang, L.: The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv. Mater. 19, 2213 (2007).CrossRefGoogle Scholar
6.Singh, R.A., Pham, D.C., Kim, J., Yang, S., and Yoon, E.S.: Bioinspired dual surface modification to improve tribological properties at small scale. Appl. Surf. Sci. 255, 4821 (2009).CrossRefGoogle Scholar
7.Kim, H.R., Park, O.H., Choi, Y.K., and Bae, B.S.: Photobleaching of gamma-glycidoxypropyltrimethoxysilane-chelated metal alkoxide gel films. J. Sol-Gel Sci. Technol. 17, 607 (2000).CrossRefGoogle Scholar
8.Segawa, H., Adachi, S., Arai, Y., and Yoshida, K.: Fine patterning of hybrid titania films by ultraviolet irradiation. J. Am. Ceram. Soc. 86, 761 (2003).CrossRefGoogle Scholar
9.Asakuma, N., Hirashima, H., Imai, H., Fukui, T., Maruta, A., Toki, M., and Awazu, K.: Photocrystallization of amorphous ZnO. J. Appl. Phys. 92, 5705 (2002).CrossRefGoogle Scholar
10.Potter, B.G., Musgraves, J.D., and Boyle, T.J.: Photo-initiation of intermolecular bonding and oxide deposition in Ti-based alkoxide solutions. J. Non-Cryst. Solids 354, 2017 (2008).CrossRefGoogle Scholar
11.Musgraves, J.D., Potter, B.G., Sewell, R.M., and Boyle, T.J.: Preferential photostructural modification of heteroleptic titanium alkoxides for molecular assembly. J. Mater. Res. 22, 1694 (2007).CrossRefGoogle Scholar
12.Musgraves, J.D., Potter, B.G., and Boyle, T.J.: Direct fabrication of physical relief structures via patterned photodeposition of a titanium alkoxide solution. Opt. Lett. 33, 1306 (2008).CrossRefGoogle ScholarPubMed
13.De Silva, C.R., Musgraves, J.D., Schneider, Z., Potter, B.G., Boyle, T.J., Simmons-Potter, K., and Corrales, L.R.: Intrinsic electronic transitions of the absorption spectrum of (OPy)(2)Ti (TAP)(2): Implications toward photostructural modifications. J. Phys. Chem. A 113, 5598 (2009).CrossRefGoogle Scholar
14.Boyle, T.J., Sewell, R.M., Ottley, L.A.M., Pratt, H.D., Quintana, C.J., and Bunge, S.D.: Controlled synthesis of a structurally characterized family of sterically constrained heterocyclic alkoxy-modified titanium alkoxides. Inorg. Chem. 46, 1825 (2007).CrossRefGoogle ScholarPubMed
15.Tuinstra, F. and Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1125 (1970).CrossRefGoogle Scholar
16.Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).Google Scholar
17.Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C, Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Salvador, P., Dannenberg, J.J., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., and Pople, J.A.: Gaussian 98 (Gaussian, Inc., Pittsburgh, PA, 1998).Google Scholar
18.Musgraves, J.D.: Investigations of the effects of photocatalysis on the molecular assembly behavior of titanium alkoxide materials. Dissertation, Univ. of Arizona, Tucson, AZ, 2008.Google Scholar
19.Baia, L., Peter, A., Cosoveanu, V., Indrea, E., Baia, M., Popp, J., and Danciu, V.: Synthesis and nanostructural characterization of TiO2 aerogels for photovoltaic devices. Thin Solid Films 511, 512 (2006).CrossRefGoogle Scholar